Nothing Special   »   [go: up one dir, main page]

Skip to main content

Understanding and Exploiting Dependent Variables with Deep Metric Learning

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2020)

Abstract

Deep Metric Learning (DML) approaches learn to represent inputs to a lower-dimensional latent space such that the distance between representations in this space corresponds with a predefined notion of similarity. This paper investigates how the mapping element of DML may be exploited in situations where the salient features in arbitrary classification problems vary over time or due to changing underlying variables. Examples of such variable features include seasonal and time-of-day variations in outdoor scenes in place recognition tasks for autonomous navigation and age/gender variations in human/animal subjects in classification tasks for medical/ethological studies. Through the use of visualisation tools for observing the distribution of DML representations per each query variable for which prior information is available, the influence of each variable on the classification task may be better understood. Based on these relationships, prior information on these salient background variables may be exploited at the inference stage of the DML approach by using a clustering algorithm to improve classification performance. This research proposes such a methodology establishing the saliency of query background variables and formulating clustering algorithms for better separating latent-space representations at run-time. The paper also discusses online management strategies to preserve the quality and diversity of data and the representation of each class in the gallery of embeddings in the DML approach. We also discuss latent works towards understanding the relevance of underlying/multiple variables with DML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanyal, S.: Discriminative descriptors for unconstrained face and object recognition (2017)

    Google Scholar 

  2. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification (2017)

    Google Scholar 

  3. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future (2016)

    Google Scholar 

  4. Wang, H., Li, H., Peng, J., Fu, X.: Multi-feature distance metric learning for non-rigid 3D shape retrieval. Multimed. Tools Appl. 78, 30943–30958 (2019). https://doi.org/10.1007/s11042-019-7670-9

    Article  Google Scholar 

  5. Boiarov, A., Tyantov, E.: Large scale landmark recognition via deep metric learning (2019). https://doi.org/10.1145/3357384.3357956

  6. Bonadiman, D., Kumar, A., Mittal, A.: Large scale question paraphrase retrieval with smoothed deep metric learning (2019)

    Google Scholar 

  7. da Silva, A.C.M., Coelho, M.A.N., Neto, R.F.: A music classification model based on metric learning applied to MP3 audio files. Expert Syst. Appl. 144, 113071 (2020). https://doi.org/10.1016/j.eswa.2019.113071

    Article  Google Scholar 

  8. Thakur, A., Thapar, D., Rajan, P., Nigam, A.: Deep metric learning for bioacoustic classification: Overcoming training data scarcity using dynamic triplet loss. J. Acoust. Soc. Am. 146, 534–547 (2019). https://doi.org/10.1121/1.5118245

    Article  Google Scholar 

  9. Marasović, T., Papić, V.: Accelerometer based gesture recognition system using distance metric learning for nearest neighbour classification. In: IEEE International Workshop on Machine Learning for Signal Processing, MLSP (2012)

    Google Scholar 

  10. Jeong, Y., Lee, S., Park, D., Park, K.H.: SS symmetry accurate age estimation using multi-task siamese network-based deep metric learning for front face images (2018). https://doi.org/10.3390/sym10090385

  11. Rahman, S., Khan, S., Porikli, F.: Zero-shot object detection: learning to simultaneously recognize and localize novel concepts (2018)

    Google Scholar 

  12. Altae-Tran, H., Ramsundar, B., Pappu, A.S., Pande, V.: Low data drug discovery with one-shot learning. ACS Cent. Sci. 3, 283–293 (2017). https://doi.org/10.1021/acscentsci.6b00367

    Article  Google Scholar 

  13. Dong, N., Xing, E.P.: Domain adaption in one-shot learning (2018)

    Google Scholar 

  14. Rao, D.J., Mittal, S., Ritika, S.: Siamese neural networks for one-shot detection of railway track switches (2017)

    Google Scholar 

  15. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations, pp. 1–11 (2017)

    Google Scholar 

  16. Fei-Fei, Li, Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28, 594–611 (2006). https://doi.org/10.1109/TPAMI.2006.79

    Article  Google Scholar 

  17. Fe-Fei, L., Fergus, R., Perona, P.: A Bayesian approach to unsupervised one-shot learning of object categories. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 2, pp.1134–1141. IEEE (2003)

    Google Scholar 

  18. Reed, S., Chen, Y., Paine, T., et al.: Few-shot autoregressive density estimation: towards learning to learn distributions. arXiv Prepr arXiv:171010304 (2018)

  19. Mehrotra, A., Dukkipati, A.: Generative adversarial residual pairwise networks for one shot learning (2017)

    Google Scholar 

  20. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features (2016)

    Google Scholar 

  21. Pahde, F., Puscas, M., Wolff, J., et al.: Low-shot learning from imaginary 3D model (2019)

    Google Scholar 

  22. Santoro, A., Bartunov, S., Botvinick, M., et al.: One-shot learning with memory-augmented neural networks (2016)

    Google Scholar 

  23. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: learning to learn quickly for few-shot learning (2017)

    Google Scholar 

  24. Hou, S., Feng, Y., Wang, Z.: VegFru: a domain-specific dataset for fine-grained visual categorization (2017)

    Google Scholar 

  25. (PDF) Attention for Fine-Grained Categorization. https://www.researchgate.net/publication/269933088_Attention_for_Fine-Grained_Categorization. Accessed 16 Jan 2020

  26. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization (2016)

    Google Scholar 

  27. Hansen, M.F., Smith, M.L., Smith, L.N., et al.: Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind. 98, 145–152 (2018). https://doi.org/10.1016/j.compind.2018.02.016

    Article  Google Scholar 

  28. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification (2018)

    Google Scholar 

  29. Liao, W., Yang, M.Y., Zhan, N., Rosenhahn, B.: Triplet-based deep similarity learning for person re-identification (2017)

    Google Scholar 

  30. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey (2017)

    Google Scholar 

  31. Gouk, H., Pfahringer, B., Cree, M.: Fast metric learning for deep neural networks (2016)

    Google Scholar 

  32. Surya Prasath, V.B., Alfeilat, H.A.A., Hassanat, A.B., et al.: Effects of distance measure choice on KNN classifier performance-a review (2019)

    Google Scholar 

  33. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition (2015)

    Google Scholar 

  34. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering (2015). https://doi.org/10.1109/cvpr.2015.7298682

  35. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Lecture Notes on Computer Science (Including Subser Lecture Notes on Artificial Intelligence Lecture Notes on Bioinformatics). LNCS, vol. 9910 (2016).. https://doi.org/10.1007/978-3-319-46466-4_29

  36. Horiguchi, S., Ikami, D., Aizawa, K.: Significance of softmax - based features over metric learning - based features. In: ICLR 2017 (2017)

    Google Scholar 

  37. Huang, C., Loy, C.C., Tang, X.: Local similarity-aware deep feature embedding (2016)

    Google Scholar 

  38. Ustinova, E., Lempitsky, V.: Learning deep embeddings with histogram loss (2016)

    Google Scholar 

  39. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification (2016)

    Google Scholar 

  40. Dong, X., Shen, J., Wu, D., et al.: Quadruplet network with one-shot learning for fast visual object tracking (2019)

    Google Scholar 

  41. Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective (2016)

    Google Scholar 

  42. Zhou, M., Niu, Z., Wang, L., et al.: Ladder loss for coherent visual-semantic embedding (2019)

    Google Scholar 

  43. Zhang, Y., Yang, Q.: A Survey on multi-task learning (2017)

    Google Scholar 

  44. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009). https://doi.org/10.1145/1577069.1577078

    Article  MATH  Google Scholar 

  45. Bonaccorso, G.: Machine Learning Algorithms Popular Algorithms for Data Science and Machine Learning, 2nd edn. Packt Publishing Ltd, Birmingham (2018)

    Google Scholar 

  46. Larsson, M., Stenborg, E., Hammarstrand, L., et al.: A cross-season correspondence dataset for robust semantic segmentation (2019)

    Google Scholar 

  47. Wu, L., Wang, Y., Gao, J., Li, X.: Deep adaptive feature embedding with local sample distributions for person re-identification (2017)

    Google Scholar 

  48. Lin, X., Duan, Y., Dong, Q., et al.: Deep variational metric learning (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094 and co-funded under the European Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero - the Irish Software Research Centre (www.lero.ie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall O’Mahony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

O’Mahony, N. et al. (2021). Understanding and Exploiting Dependent Variables with Deep Metric Learning. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3_8

Download citation

Publish with us

Policies and ethics