Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reversible Programs Have Reversible Semantics

  • Conference paper
  • First Online:
Formal Methods. FM 2019 International Workshops (FM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12233))

Included in the following conference series:

Abstract

During the past decade, reversible programming languages have been formalized using various established semantic frameworks. However, these semantics fail to effectively specify the distinct properties of reversible languages at the metalevel, and even neglect the central question of whether the defined language is reversible. In this paper, we build on a metalanguage foundation for reversible languages based on the category of sets and partial injective functions. We exemplify our approach through step-by-step development of the full semantics of an r-Turing complete reversible while-language with recursive procedures. This yields a formalization of the semantics in which the reversibility of the language and its inverse semantics are immediate, as well as the inversion of programs written in the language. We further discuss applications and future research directions for reversible semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An online interpreter for R-WHILE with procedures and the example program considered in this paper are available at http://tetsuo.jp/ref/RPLA2019.

References

  1. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74510-5_9

    Chapter  MATH  Google Scholar 

  2. Cockett, R., Lack, S.: Restriction categories III: colimits, partial limits and extensivity. Math. Struct. Comput. Sci. 17(4), 775–817 (2007)

    Article  MathSciNet  Google Scholar 

  3. Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, MIT (1999)

    Google Scholar 

  4. Giles, B.: An investigation of some theoretical aspects of reversible computing. Ph.D. thesis, University of Calgary (2014)

    Google Scholar 

  5. Glück, R., Kaarsgaard, R.: A categorical foundation for structured reversible flowchart languages: Soundness and adequacy. Log. Methods Comput. Sci. 14(3) (2018)

    Google Scholar 

  6. Glück, R., Kawabe, M.: Revisiting an automatic program inverter for Lisp. SIGPLAN Not. 40(5), 8–17 (2005)

    Article  Google Scholar 

  7. Glück, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans. Inf. Syst. E100-D 100(5), 1026–1034 (2017)

    Article  Google Scholar 

  8. Glück, R., Yokoyama, T.: Constructing a binary tree from its traversals by reversible recursion and iteration. IPL 147, 32–37 (2019)

    Article  MathSciNet  Google Scholar 

  9. Haghverdi, E.: A categorical approach to linear logic, geometry of proofs and full completeness. Ph.D. thesis, Carlton Univ. and Univ. Ottawa (2000)

    Google Scholar 

  10. Hoey, J., Ulidowski, I., Yuen, S.: Reversing parallel programs with blocks and procedures. In: Pérez, J.A., Tini, S. (eds.) Expressiveness in Concurrency, Structural Operational Semantics. Electronic Proceedings in TCS, vol. 276, pp. 69–86 (2018)

    Google Scholar 

  11. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59936-6_3

    Chapter  MATH  Google Scholar 

  12. James, R.P., Sabry, A.: Information effects. In: POPL, pp. 73–84. ACM (2012)

    Google Scholar 

  13. Kaarsgaard, R., Axelsen, H.B., Glück, R.: Join inverse categories and reversible recursion. J. Log. Algebr. Methods 87, 33–50 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Kari, J.: Reversible cellular automata: from fundamental classical results to recent developments. New Gener. Comput. 36(3), 145–172 (2018)

    Article  Google Scholar 

  15. Kuhn, S., Ulidowski, I.: A calculus for local reversibility. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 20–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_2

    Chapter  Google Scholar 

  16. Morita, K.: Reversible computing and cellular automata – a survey. Theor. Comput. Sci. 395(1), 101–131 (2008)

    Article  MathSciNet  Google Scholar 

  17. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics. LNP, vol. 813, pp. 289–355. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-12821-9_4

    Chapter  MATH  Google Scholar 

  18. Wille, R., Schönborn, E., Soeken, M., Drechsler, R.: SyReC: a hardware description language for the specification and synthesis of reversible circuits. Integration 53, 39–53 (2016)

    Article  Google Scholar 

  19. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cambridge (1993)

    Book  Google Scholar 

  20. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1_2

    Chapter  MATH  Google Scholar 

  21. Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart languages. Theor. Comput. Sci. 611, 87–115 (2016)

    Article  MathSciNet  Google Scholar 

  22. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: PEPM, pp. 144–153. ACM (2007)

    Google Scholar 

Download references

Acknowledgments

Support in the form of EU COST Action IC1405 is acknowledged. The third author is supported by JSPS KAKENHI Grant Number 18K11250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Glück .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glück, R., Kaarsgaard, R., Yokoyama, T. (2020). Reversible Programs Have Reversible Semantics. In: Sekerinski, E., et al. Formal Methods. FM 2019 International Workshops. FM 2019. Lecture Notes in Computer Science(), vol 12233. Springer, Cham. https://doi.org/10.1007/978-3-030-54997-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54997-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54996-1

  • Online ISBN: 978-3-030-54997-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics