Abstract
As Nietzsche once wrote “Without music, life would be a mistake” (Twilight of the Idols, 1889.). The music we listen to reflects our personality, our way to approach life. In order to enforce self-awareness, we devised a Personal Listening Data Model that allows for capturing individual music preferences and patterns of music consumption. We applied our model to 30k users of Last.Fm for which we collected both friendship ties and multiple listening. Starting from such rich data we performed an analysis whose final aim was twofold: (i) capture, and characterize, the individual dimension of music consumption in order to identify clusters of like-minded Last.Fm users; (ii) analyze if, and how, such clusters relate to the social structure expressed by the users in the service. Do there exist individuals having similar Personal Listening Data Models? If so, are they directly connected in the social graph or belong to the same community?.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The choice of describing a listening with these attributes is related to the case study. Additional attributes can be used when available from the data. We highlight that listening means that the song was played and not necessarily entirely listened.
- 2.
http://www.last.fm/api/, retrieval date 2016-04-04.
- 3.
The code, along with the ids of seed users used in this study, is available at https://github.com/GiulioRossetti/LastfmProfiler. The complete dataset is not released to comply with Last.fm TOS.
- 4.
The p-value is zero (or smaller than 0.000001) for all the correlations.
- 5.
The analysis of \(b_u\) have similar results (not reported due to lack of space).
- 6.
The Pearson correlations ranges in [0.96, 0.99], \(\text {p-value} \ll 1.0e^{-60}\).
References
Abiteboul, S., André, B., Kaplan, D.: Managing your digital life. Commun. ACM 58(5), 32–35 (2015)
Al Zamal, F., Liu, W., Ruths, D.: Homophily and latent attribute inference: inferring latent attributes of twitter users from neighbors. In: ICWSM, vol. 270 (2012)
Arnaboldi, V., Conti, M., Passarella, A., Pezzoni, F.: Analysis of ego network structure in online social networks. In: Privacy, security, risk and trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom), pp. 31–40. IEEE (2012)
Bischoff, K.: We love rock ’n’ roll: analyzing and predicting friendship links in last.fm. In: Web Science 2012, WebSci 2012, Evanston, IL, USA - 22–24 June 2012, pp. 47–56 (2012)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)
Bu, J., et al.: Music recommendation by unified hypergraph: combining social media information and music content. In: International conference on Multimedia, pp. 391–400. ACM (2010)
Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Uncovering hierarchical and overlapping communities with a local-first approach. ACM Trans. Knowl. Discovery Data (TKDD) 9(1), 1–27 (2014)
Draper, N.R., Smith, H., Pownell, E.: Applied regression analysis, vol. 3. Wiley, New York (1966)
Guidotti, R., Berlingerio, M.: Where is my next friend? Recommending enjoyable profiles in location based services. In: Cherifi, H., Gonçalves, B., Menezes, R., Sinatra, R. (eds.) Complex Networks VII. SCI, vol. 644, pp. 65–78. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30569-1_5
Guidotti, R., Coscia, M., Pedreschi, D., Pennacchioli, D.: Behavioral entropy and profitability in retail. In: International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10. IEEE (2015)
Guidotti, R., Monreale, A., Nanni, M., et al.: Clustering individual transactional data for masses of users. In: SIGKDD, pp. 195–204. ACM (2017)
Guidotti, R., Rossetti, G., Pappalardo, L., et al.: Market basket prediction using user-centric temporal annotated recurring sequences. In: 2017 International Conference on Data Mining (ICDM), pp. 895–900. IEEE (2017)
Guidotti, R., Rossetti, G., Pedreschi, D.: Audio Ergo Sum. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946, pp. 51–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50230-4_5
Guidotti, R., Sassi, A., Berlingerio, M., Pascale, A., Ghaddar, B.: Social or green? A data-driven approach for more enjoyable carpooling. In: 2015 18th International Conference on Intelligent Transportation Systems, pp. 842–847. IEEE (2015)
Guidotti, R., Trasarti, R., Nanni, M.: TOSCA: two-steps clustering algorithm for personal locations detection. In: International Conference on Advances in Geographic Information Systems (SIGSPATIAL). ACM (2015)
Guidotti, R., Trasarti, R., Nanni, M.: Towards user-centric data management: individual mobility analytics for collective services. In: SIGSPATIAL. ACM (2015)
Guidotti, R., Trasarti, R., et al.: There’s a path for everyone: a data-driven personal model reproducing mobility agendas. In: DSAA, pp. 303–312. IEEE (2017)
Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data mining. In: International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 206–215. ACM (2004)
McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)
de Montjoye, Y.A., Shmueli, E., Wang, S.S., Pentland, A.S.: openPDS: protecting the privacy of metadata through safeanswers. PLoS ONE 9(7), e98790 (2014)
Park, M., Weber, I., Naaman, M., Vieweg, S.: Understanding musical diversity via online social media. In: AAAI Conference on Web and Social Media (2015)
Pennacchioli, D., Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F., Coscia, M.: The three dimensions of social prominence. In: Jatowt, A., et al. (eds.) SocInfo 2013. LNCS, vol. 8238, pp. 319–332. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03260-3_28
Putzke, J., Fischbach, K., Schoder, D., Gloor, P.A.: Cross-cultural gender differences in the adoption and usage of social media platforms - an exploratory study of last.fm. Comput. Netw. 75, 519–530 (2014)
Rawlings, D., Ciancarelli, V.: Music preference and the five-factor model of the neo personality inventory. Psychol. Music 25(2), 120–132 (1997)
Rentfrow, P.J., Gosling, S.D.: The do re mi’s of everyday life: the structure and personality correlates of music preferences. J. Pers. Soc. Psychol. 84(6), 1236 (2003)
Rossetti, G., Guidotti, R., Miliou, I., Pedreschi, D., Giannotti, F.: A supervised approach for intra-/inter-community interaction prediction in dynamic social networks. Soc. Netw. Anal. Min. 6(1), 1–20 (2016). https://doi.org/10.1007/s13278-016-0397-y
Rossetti, G., Pappalardo, L., Kikas, R., Pedreschi, D., Giannotti, F., Dumas, M.: Community-centric analysis of user engagement in skype social network. In: ASONAM, pp. 547–552. IEEE (2015)
Tan, P.N., Steinbach, M., Kumar, V., et al.: Introduction to Data Mining, vol. 1. Pearson Addison Wesley, Boston (2006)
Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: Myway: location prediction via mobility profiling. Inf. Syst. 64, 350–367 (2015)
Vescovi, M., Moiso, C., Pasolli, M., Cordin, L., Antonelli, F.: Building an eco-system of trusted services via user control and transparency on personal data. In: Damsgaard Jensen, C., Marsh, S., Dimitrakos, T., Murayama, Y. (eds.) IFIPTM 2015. IAICT, vol. 454, pp. 240–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18491-3_20
Vescovi, M., Perentis, C., Leonardi, C., Lepri, B., Moiso, C.: My data store: toward user awareness and control on personal data. In: International Joint Conference on Pervasive and Ubiquitous Computing, pp. 179–182. ACM (2014)
Zheleva, E., Guiver, J., Mendes Rodrigues, E., Milić-Frayling, N.: Statistical models of music-listening sessions in social media. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1019–1028. ACM (2010)
Acknowledgment
This work is partially supported by the European Community H2020 programme under the funding schemes: INFRAIA-1-2014-2015: Research Infrastructures G.A. 654024 SoBigData (http://www.sobigdata.eu), G.A. 78835 Pro-Res (http://prores-project.eu/), and G.A. 825619 AI4EU (https://www.ai4eu.eu/), and G.A. 780754 Track & Know (https://trackandknowproject.eu/).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Guidotti, R., Rossetti, G. (2020). “Know Thyself” How Personal Music Tastes Shape the Last.Fm Online Social Network. In: Sekerinski, E., et al. Formal Methods. FM 2019 International Workshops. FM 2019. Lecture Notes in Computer Science(), vol 12232. Springer, Cham. https://doi.org/10.1007/978-3-030-54994-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-54994-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-54993-0
Online ISBN: 978-3-030-54994-7
eBook Packages: Computer ScienceComputer Science (R0)