Nothing Special   »   [go: up one dir, main page]

Skip to main content

Distributed Tree-Pattern Matching in Big Data Analytics Systems

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12245))

Included in the following conference series:

  • 1414 Accesses

Abstract

Big data analytics systems such as Apache Spark offer built-in support for nested data, which abounds, for instance, as JSON data available online. However, these systems typically have to transform the data to gain access to (deeply) nested data for further processing. This adds complexity to big data analytics pipelines and may result in an unnecessary runtime overhead. Therefore, this paper introduces tree-pattern matching as a first-class operator in big data analytics systems. It reduces the complexity of big data analytics pipelines and accelerates the pipeline processing by up to four times, compared to state-of-the-art pipelines for nested data. The novelty of our operator lies in the distributed and data-parallel processing supported by its underlying tree-pattern matching algorithm. Experiments validate that our operator, implemented in Spark, can improve pipeline complexity and runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afrati, F., Delorey, D., Pasumansky, M., Ullman, J.D.: Storing and querying tree-structured records in Dremel. PVLDB 7(12), 1131–1142 (2014)

    Google Scholar 

  2. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J., Srivastava, D., Wu, Y.: Structural joins: a primitive for efficient XML query pattern matching. In: ICDE (2002)

    Google Scholar 

  3. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: SIGMOD (2015)

    Google Scholar 

  4. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern matching. In: SIGMOD (2002)

    Google Scholar 

  5. Diestelkämper, R.: Evaluation workload (2020). https://www.ipvs.uni-stuttgart.de/departments/de/resources/pebble/pebble_tpm_workload.pdf

  6. Diestelkämper, R., Herschel, M.: Capturing and querying structural provenance in spark with pebble. In: SIGMOD (2019)

    Google Scholar 

  7. Diestelkämper, R., Herschel, M.: Tracing nested data with structural provenance for big data analytics. In: EDBT (2020)

    Google Scholar 

  8. Grimsmo, N., Bjørklund, T., Hetland, M.: Fast optimal twig joins. PVLDB 3, 894–905 (2010)

    Google Scholar 

  9. Grumbach, S., Milo, T.: Towards tractable algebras for bags. J. Comput. Syst. Sci. 52(3), 570–588 (1996)

    Google Scholar 

  10. Hachicha, M., Darmont, J.: A survey of XML tree patterns. TKDE 25(1), 29–46 (2013)

    Google Scholar 

  11. Izadi, S.K., Härder, T., Haghjoo, M.: S3: evaluation of tree-pattern XML queries supported by structural summaries. Data Knowl. Eng. 68(1), 126–145 (2009)

    Article  Google Scholar 

  12. Kumar, S.: Twitter Data Analytics. SpringerBriefs in Computer Science, 1st edn., p. 77. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-9372-3

    Book  Google Scholar 

  13. Ley, M.: DBLP: some lessons learned. PVLDB 2(2), 1493–1500 (2009)

    Google Scholar 

  14. Lu, J., Ling, T., Chan, C.Y., Chen, T.: From region encoding to extended Dewey: on efficient processing of XML twig pattern matching. In: VLDB (2005)

    Google Scholar 

  15. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig patterns with parent child edges: A look-ahead approach. In: CIKM (2004)

    Google Scholar 

  16. Lu, J., Ling, T.W., Bao, Z., Wang, C.: Extended XML tree pattern matching: theories and algorithms. TKDE 23(3), 402–416 (2011)

    Google Scholar 

  17. Lu, J., Meng, X., Ling, T.W.: Indexing and querying XML using extended Dewey labeling scheme. Data Knowl. Eng. 70(1), 35–59 (2011)

    Article  Google Scholar 

  18. Tahraoui, M., Pinel-Sauvagnat, K., Laitang, C., Boughanem, M., Kheddouci, H., Ning, L.: A survey on tree matching and XML retrieval. Comp. Sci. Rev. 8, 1–23 (2013)

    Article  Google Scholar 

  19. Tchendji, M.T., Tadonfouet, L., Tchendji, T.T.: A tree pattern matching algorithm for XML queries with structural preferences. J. Comput. Commun. 7, 61–83 (2019)

    Article  Google Scholar 

  20. Wang, Z., Chen, S.: Exploiting common patterns for tree-structured data. In: SIGMOD (2017)

    Google Scholar 

  21. Wu, X., Liu, G.: XML twig pattern matching using version tree. Data Knowl. Eng. 64(3), 580–599 (2008)

    Article  MathSciNet  Google Scholar 

  22. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. CACM 59(11), 56–65 (2016)

    Google Scholar 

  23. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On supporting containment queries in relational database management systems. In: SIGMOD (2001)

    Google Scholar 

Download references

Acknowledgements

Partially funded by Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy - EXC 2075 - 390740016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Diestelkämper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diestelkämper, R., Herschel, M. (2020). Distributed Tree-Pattern Matching in Big Data Analytics Systems. In: Darmont, J., Novikov, B., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2020. Lecture Notes in Computer Science(), vol 12245. Springer, Cham. https://doi.org/10.1007/978-3-030-54832-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54832-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54831-5

  • Online ISBN: 978-3-030-54832-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics