Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fog Removal of Aerial Image Based on Gamma Correction and Guided Filtering

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12015))

Included in the following conference series:

  • 869 Accesses

Abstract

In order to improve the pilots’ perception of the runway and the surrounding things in foggy days and improve the visual effect of aerial images, a combination of Gamma correction and Retinex de-fogging algorithm is proposed for aerial foggy images. First of all, the original image is corrected by Gamma as the guided map, and the light intensity of the aerial image is estimated by the guided filter, and the preliminary fog removal image is obtained by Retinex. In combination with the histogram truncation technique, the output of the image is mapped to between 0 and 255, then a de-fogging enhanced image is achieved. Compared with other de-fogging algorithms, this algorithm has higher contrast and color consistency.

Supported in part by Sichuan Science and Technology Program under Grant No. 2019YJ0541, the Open Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing under Grant No. 2019QZJ03 and Natural Science Foundation of Sichuan University of Science and Engineering (SUSE) under Grant No. 2019RC09, 2020RC28.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fattal, R.: Single image dehazing. ACM Trans. Graph. (TOG) 27(3), 72 (2008)

    Article  Google Scholar 

  2. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1

    Chapter  Google Scholar 

  3. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  4. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2012)

    Article  Google Scholar 

  5. Huang, D., Fang, Z., Zhao, L., Chu, X.: An improved image clearness algorithm based on dark channel prior. In: Proceedings of the 33rd Chinese Control Conference, pp. 7350–7355. IEEE (2014)

    Google Scholar 

  6. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  7. Kapoor, R., Gupta, R., Son, L.H., Kumar, R., Jha, S.: Fog removal in images using improved dark channel prior and contrast limited adaptive histogram equalization. Multimed. Tools Appl. 78(16), 23281–23307 (2019). https://doi.org/10.1007/s11042-019-7574-8

    Article  Google Scholar 

  8. Land, E.H., McCann, J.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)

    Article  Google Scholar 

  9. Li, S., Ren, W., Zhang, J., Yu, J., Guo, X.: Single image rain removal via a deep decomposition–composition network. In: Computer Vision and Image Understanding (2019)

    Google Scholar 

  10. Liu, C., Cheng, I., Zhang, Y., Basu, A.: Enhancement of low visibility aerial images using histogram truncation and an explicit retinex representation for balancing contrast and color consistency. ISPRS J. Photogram. Remote Sens. 128, 16–26 (2017)

    Article  Google Scholar 

  11. Liu, P., Wang, M., Wang, L., Han, W.: Remote-sensing image denoising with multi-sourced information. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 12(2), 660–674 (2019)

    Article  Google Scholar 

  12. Livingston, M.A., Garrett, C.R., Ai, Z.: Image processing for human understanding in low-visibility. Techical report, Naval Research Lab Washington DC Information Technology Div (2011)

    Google Scholar 

  13. Lu, H., Li, Y., Nakashima, S., Serikawa, S.: Single image dehazing through improved atmospheric light estimation. Multimed. Tools Appl. 75(24), 17081–17096 (2015). https://doi.org/10.1007/s11042-015-2977-7

    Article  Google Scholar 

  14. Patil, M.D., Sutar, M.S., Mulla, M.A.: Automatic image enhancement for better visualization using retinex technique. Int. J. Sci. Res. Publ. 3(6), 1–4 (2013)

    Google Scholar 

  15. Pu, Y.F., et al.: A fractional-order variational framework for retinex: fractional-order partial differential equation-based formulation for multi-scale nonlocal contrast enhancement with texture preserving. IEEE Trans. Image Process. 27(3), 1214–1229 (2017)

    Article  MathSciNet  Google Scholar 

  16. Sahu, S., Singh, A.K., Ghrera, S., Elhoseny, M., et al.: An approach for de-noising and contrast enhancement of retinal fundus image using clahe. Optics Laser Technol. 110, 87–98 (2019)

    Article  Google Scholar 

  17. Suarez, P.L., Sappa, A.D., Vintimilla, B.X., Hammoud, R.I.: Deep learning based single image dehazing. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2018)

    Google Scholar 

  18. Tanchenko, A.: Visual-psnr measure of image quality. J. Vis. Commun. Image Represent. 25(5), 874–878 (2014)

    Article  Google Scholar 

  19. Wang, W., Yuan, X.: Recent advances in image dehazing. IEEE/CAA J. Automatica Sinica 4(3), 410–436 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Liu, C., Lan, H. (2020). Fog Removal of Aerial Image Based on Gamma Correction and Guided Filtering. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics