Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Lower Bound for Optimization of Arbitrary Function on Permutations

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2020)

Abstract

A generic constrained permutation-based optimization problem is considered. It is reduced to a Euclidean discrete permutation-based optimization problem, which a discrete optimization problem over vertices of the generalized permutohedron. To this Euclidean combinatorial problem, an equivalent permutation-based optimization problem with convex objective function and convex constraints is formed based on applying the convex extensions theory and a vertex locality of a feasible set. A hybrid approach to solving a polyhedral relaxation of this optimization problem is presented. It jointly uses the penalty method and an offered modification of the conditional gradient method. As a result, a lower bound of the global minimum is found in an arbitrary permutation-based problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley-Interscience (2006)

    Google Scholar 

  2. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)

    Google Scholar 

  3. Bertsekas, D.P.: Convex Optimization Algorithms, 1st edn. Athena Scientific (2015)

    Google Scholar 

  4. Borwein, J., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. CMS Books in Mathematics, 2nd edn. Springer (2006). https://doi.org/10.1007/978-0-387-31256-9

  5. Boyd, S., Vandenberghe, L.: Convex Optimization, 1st edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012). https://doi.org/10.1016/j.sorms.2012.08.001

    Article  MathSciNet  Google Scholar 

  7. Butenko, S., Pardalos, P.M., Shylo, V. (eds.): Optimization Methods and Applications: In Honor of Ivan V. Sergienko’s 80th Birthday. Springer Optimization and Its Applications. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-68640-0

  8. Christ, M.: The extension problem for certain function spaces involving fractional orders of differentiability. Arkiv för Matematik 22(1), 63–81 (1984). https://doi.org/10.1007/BF02384371

    Article  MathSciNet  MATH  Google Scholar 

  9. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1998)

    Google Scholar 

  10. Dahl, J.: Convex Optimization in Signal Processing and Communications, Department of Communication Technology, Aalborg University (2003)

    Google Scholar 

  11. Ferreira, O.P., Iusem, A.N., Németh, S.Z.: Concepts and techniques of optimization on the sphere. TOP 22(3), 1148–1170 (2014). https://doi.org/10.1007/s11750-014-0322-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Gimadi, E., Khachay, M.: Extremal Problems on Sets of Permutations. UMC UPI, Ekaterinburg (2016). (in Russian)

    Google Scholar 

  13. Gmys, J.: Heterogeneous cluster computing for many-task exact optimization - Application to permutation problems. Université de Mons (UMONS), University de Lille, Mons (2017)

    Google Scholar 

  14. Graf, M., Hielscher, R.: Fast global optimization on the torus, the sphere, and the rotation group. SIAM J. Optim. 25(1), 540–563 (2015). https://doi.org/10.1137/130950070

    Article  MathSciNet  MATH  Google Scholar 

  15. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer (1996). https://doi.org/10.1007/978-3-662-03199-5

  16. de Kierk, E.: The complexity of optimizing over a simplex, hypercube or sphere: a short survey. CEJOR 16(2), 111–125 (2008). https://doi.org/10.1007/s10100-007-0052-9

    Article  MathSciNet  Google Scholar 

  17. Koliechkina, L., Pichugina, O.: A horizontal method of localizing values of a linear function in permutation-based optimization. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. Advances in Intelligent Systems and Computing, pp. 355–364. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21803-4_36

  18. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 6th edn. Springer (2018). https://doi.org/10.1007/978-3-662-56039-6

  19. Lang, S.: Algebra. Graduate Texts in Mathematics, 3rd edn. Springer (2002). https://doi.org/10.1007/978-1-4613-0041-0

  20. Mehdi, M.: Parallel Hybrid Optimization Methods for permutation based problems. University des Sciences et Technologie de Lille, Lille (2011)

    Google Scholar 

  21. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer (2006). https://doi.org/10.1007/b98874

  22. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications (1998)

    Google Scholar 

  23. Pardalos, P.M., Du, D., Graham, R.L.: Handbook of combinatorial optimization. Springer Reference. Springer, New York (2005). https://doi.org/10.1007/b102533

  24. Pichugina, O., Yakovlev, S.: Euclidean combinatorial configurations: continuous representations and convex extensions. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) Lecture Notes in Computational Intelligence and Decision Making, Advances in Intelligent Systems and Computing, pp. 65–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26474-1_5

  25. Pichugina, O., Yakovlev, S.: Quadratic optimization models and convex extensions on permutation matrix set. In: Shakhovska, N., Medykovskyy, M.O. (eds.) Advances in Intelligent Systems and Computing IV. Advances in Intelligent Systems and Computing, pp. 231–246. Springer (2019). https://doi.org/10.1007/978-3-030-33695-0_17

  26. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. American Mathematical Society, 1st edn. (1973)

    Google Scholar 

  27. Postnikov, A.: Permutohedra, associahedra, and beyond. IMRN: International Mathematics Research Notices 2009(6), 1026–1106 (2009). https://doi.org/10.1093/imrn/rnn153

    Article  MathSciNet  MATH  Google Scholar 

  28. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1996)

    Google Scholar 

  29. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics. Springer (2003)

    Google Scholar 

  30. Stetsyuk, P.I.: Dual bounds in quadratic extremal problems. A series of scientific publications “Non-differentiable optimization and its applications” dedicated to academician N.Z. Shor, Eureka (2018)

    Google Scholar 

  31. Stoyan, Y.G., Yemets’, O.: Theory and methods of Euclidean combinatorial optimization (in Ukrainian). ISSE (1993)

    Google Scholar 

  32. Stoyan, Y.G., Yakovlev, S.V., Emets, O.A., Valuŏskaya, O.A.: Construction of convex continuations for functions defined on a hypersphere. Cybern. Syst. Anal. 34(2), 27–36 (1998). https://doi.org/10.1007/BF02742066

    Article  MathSciNet  Google Scholar 

  33. Stoyan, Y.G., Yakovlev, S.V., Pichugina, O.S.: The Euclidean combinatorial configurations, Constanta (2017)

    Google Scholar 

  34. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimization and Its Applications, 1st edn. vol. 65, Springer (2002). https://doi.org/10.1007/978-1-4757-3532-1

  35. Tuy, H.: Convex Analysis and Global Optimization, 2nd edn. Springer (2016)

    Google Scholar 

  36. Yakovlev, S., Pichugina, O., Yarovaya, O.: On optimization problems on the polyhedral-spherical configurations with their properties. In: 2018 IEEE First International Conference on System Analysis Intelligent Computing (SAIC), pp. 94–100 (2018). https://doi.org/10.1109/SAIC.2018.8516801

  37. Yakovlev, S.V.: Bounds on the minimum of convex functions on euclidean combinatorial sets. Cybernetics 25(3), 385–391 (1989). https://doi.org/10.1007/BF01069996

    Article  MathSciNet  MATH  Google Scholar 

  38. Yakovlev, S.V.: The theory of convex continuations of functions on vertices of convex polyhedra. Comput. Math. Math. Phys. 34(7), 1112–1119 (1994)

    MathSciNet  Google Scholar 

  39. Yakovlev, S.V., Pichugina, O.S.: Properties of combinatorial optimization problems over polyhedral-spherical sets. Cybern. Syst. Anal. 54(1), 99–109 (2018). https://doi.org/10.1007/s10559-018-0011-6

    Article  MATH  Google Scholar 

  40. Yakovlev, S.: Convex extensions in combinatorial optimization and their applications. In: Optimization Methods and Applications. Springer Optimization and Its Applications, pp. 567–584. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68640-0_27

  41. Yakovlev, S., Kartashov, O., Pichugina, O.: Optimization on combinatorial configurations using genetic algorithms. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), CEUR, vol-2353, pp. 28–40 (2019). urn:nbn:de:0074-2353-0

    Google Scholar 

  42. Yakovlev, S., Pichugina, O.: On constrained optimization of polynomials on permutation set. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019). CEUR, vol. 2353, pp. 570–580 (2019). urn:nbn:de:0074-2353-0

    Google Scholar 

  43. Yemelichev, V.A., Kovalev, M.M., Kravtsov, M.K.: Polytopes. Graphs and Optimisation. Cambridge University Press, Cambridge (1984). translated from the Russian by G. H. Lawden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Yakovlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yakovlev, S., Pichugina, O., Koliechkina, L. (2021). A Lower Bound for Optimization of Arbitrary Function on Permutations. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2020. Advances in Intelligent Systems and Computing, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-54215-3_13

Download citation

Publish with us

Policies and ethics