Abstract
The multi-objective evolutionary algorithms based on decomposition (MOEA/D) have achieved great success in the area of evolutionary multi-objective optimization. Numerous MOEA/D variants are focused on solving the normalized multi- and many-objective problems without paying attention to problems having objectives with different scales. For this purpose, this paper proposes a decomposition-based evolutionary algorithm with adaptive weight vectors (DBEA-AWV) for both the normalized and scaled multi- and many-objective problems. In the light of this direction, we compare existing popular decomposition approaches and choose the best suitable one incorporated into DBEA-AWV. Moreover, one novel replacement strategy is adopted to attain the balance between convergence and diversity for multi- and many-objective optimization problems. Our experimental results demonstrate that the proposed algorithm is efficient and reliable for dealing with different normalized and scaled problems, outperforming several other state-of-the-art multi- and many-objective evolutionary algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)
Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)
Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6
Giagkiozis, I., Purshouse, R.C., Fleming, P.J.: Towards understanding the cost of adaptation in decomposition-based optimization algorithms. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 615–620. IEEE (2013)
Han, D., Du, W., Du, W., Jin, Y., Wu, C.: An adaptive decomposition-based evolutionary algorithm for many-objective optimization. Inf. Sci. 491, 204–222 (2019)
Li, H., Sun, J., Zhang, Q., Shui, Y.: Adjustment of weight vectors of penalty-based boundary intersection method in MOEA/D. In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 91–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_8
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284 (2009)
Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2014)
Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching-based selection in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 18(6), 909–923 (2013)
Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Trans. Evol. Comput. 11(6), 770–784 (2007)
Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014)
Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187 (2018)
Tian, Y., Cheng, R., Zhang, X., Cheng, F., Jin, Y.: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 22(4), 609–622 (2017)
Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)
Wang, R., Zhang, Q., Zhang, T.: Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 20(6), 821–837 (2016)
Yang, S., Jiang, S., Jiang, Y.: Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. Soft. Comput. 21(16), 4677–4691 (2017)
Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)
Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(1), 16–37 (2015)
Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180–198 (2015)
Zhang, J., Xing, L.: A survey of multiobjective evolutionary algorithms. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 93–100, July 2017
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca Grunert, V.: Performance assessment of multiobjective optimizers: an analysis and review. TIK-Report 139 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, G., Wolter, K. (2020). A Decomposition-Based Evolutionary Algorithm with Adaptive Weight Vectors for Multi- and Many-objective Optimization. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-43722-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43721-3
Online ISBN: 978-3-030-43722-0
eBook Packages: Computer ScienceComputer Science (R0)