Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Decomposition-Based Evolutionary Algorithm with Adaptive Weight Vectors for Multi- and Many-objective Optimization

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12104))

Abstract

The multi-objective evolutionary algorithms based on decomposition (MOEA/D) have achieved great success in the area of evolutionary multi-objective optimization. Numerous MOEA/D variants are focused on solving the normalized multi- and many-objective problems without paying attention to problems having objectives with different scales. For this purpose, this paper proposes a decomposition-based evolutionary algorithm with adaptive weight vectors (DBEA-AWV) for both the normalized and scaled multi- and many-objective problems. In the light of this direction, we compare existing popular decomposition approaches and choose the best suitable one incorporated into DBEA-AWV. Moreover, one novel replacement strategy is adopted to attain the balance between convergence and diversity for multi- and many-objective optimization problems. Our experimental results demonstrate that the proposed algorithm is efficient and reliable for dealing with different normalized and scaled problems, outperforming several other state-of-the-art multi- and many-objective evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  Google Scholar 

  3. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  4. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  8. Giagkiozis, I., Purshouse, R.C., Fleming, P.J.: Towards understanding the cost of adaptation in decomposition-based optimization algorithms. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 615–620. IEEE (2013)

    Google Scholar 

  9. Han, D., Du, W., Du, W., Jin, Y., Wu, C.: An adaptive decomposition-based evolutionary algorithm for many-objective optimization. Inf. Sci. 491, 204–222 (2019)

    Article  MathSciNet  Google Scholar 

  10. Li, H., Sun, J., Zhang, Q., Shui, Y.: Adjustment of weight vectors of penalty-based boundary intersection method in MOEA/D. In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 91–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_8

    Chapter  Google Scholar 

  11. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284 (2009)

    Article  Google Scholar 

  12. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2014)

    Article  Google Scholar 

  13. Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching-based selection in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 18(6), 909–923 (2013)

    Google Scholar 

  14. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Trans. Evol. Comput. 11(6), 770–784 (2007)

    Article  Google Scholar 

  15. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014)

    Article  Google Scholar 

  16. Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187 (2018)

    Article  Google Scholar 

  17. Tian, Y., Cheng, R., Zhang, X., Cheng, F., Jin, Y.: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 22(4), 609–622 (2017)

    Article  Google Scholar 

  18. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  19. Wang, R., Zhang, Q., Zhang, T.: Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 20(6), 821–837 (2016)

    Article  Google Scholar 

  20. Yang, S., Jiang, S., Jiang, Y.: Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. Soft. Comput. 21(16), 4677–4691 (2017)

    Article  Google Scholar 

  21. Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)

    Article  Google Scholar 

  22. Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(1), 16–37 (2015)

    Article  Google Scholar 

  23. Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180–198 (2015)

    Article  Google Scholar 

  24. Zhang, J., Xing, L.: A survey of multiobjective evolutionary algorithms. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 93–100, July 2017

    Google Scholar 

  25. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  26. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  27. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  28. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca Grunert, V.: Performance assessment of multiobjective optimizers: an analysis and review. TIK-Report 139 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, G., Wolter, K. (2020). A Decomposition-Based Evolutionary Algorithm with Adaptive Weight Vectors for Multi- and Many-objective Optimization. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43722-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics