Abstract
We present an iterative method based on a generalization of the Golub-Kahan bidiagonalization for solving indefinite matrices with a 2 \(\times \) 2 block structure. We focus in particular on our recent implementation of the algorithm using the parallel numerical library PETSc. Since the algorithm is a nested solver, we investigate different choices for parallel inner solvers and show its strong scalability for two Stokes test problems. The algorithm is found to be scalable for large sparse problems.
M. Sosonkina—The work of the second author was supported in part by the U.S. National Science Foundation under grant CNS-1828593.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amestoy, P., Duff, I., L’Excellent, J., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). https://doi.org/10.1137/S0895479899358194
Arioli, M.: Generalized Golub-Kahan bidiagonalization and stopping criteria. SIAM J. Matrix Anal. Appl. 34(2), 571–592 (2013). https://doi.org/10.1137/120866543
Arioli, M., Kruse, C., Rüde, U., Tardieu, N.: An iterative generalized Golub-Kahan algorithm for problems in structural mechanics. CoRR (2018). http://arxiv.org/abs/1808.07677
Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., et al.: PETSc Web page (2019). http://www.mcs.anl.gov/petsc
Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., et al.: PETSc users manual. Technical report ANL-95/11 - Revision 3.11, Argonne National Laboratory (2019). http://www.mcs.anl.gov/petsc
Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Boston (1997). https://doi.org/10.1007/978-1-4612-1986-6_8
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005). https://doi.org/10.1017/S0962492904000212
Brandt, A., Livne, O.E.: Multigrid techniques: 1984 guide with applications to fluid dynamics. SIAM 67 (2011). https://doi.org/10.1137/1.9781611970753
Dongarra, J., et al.: Applied mathematics research for exascale computing. Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore (2014). https://doi.org/10.2172/1149042
Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state navier-stokes equations. Numer. Math. 90(4), 665–688 (2002). https://doi.org/10.1007/s002110100
Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, USA (2014). https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56026-2
Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance study for stokes solvers at the extreme scale. J. Comput. Sci. 17, 509–521 (2016). https://doi.org/10.1016/j.jocs.2016.06.006
Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Towards textbook efficiency for parallel multigrid. Numer. Math.: Theory Methods Appl. 8(1), 22–46 (2015). https://doi.org/10.4208/nmtma.2015.w10si
Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Indu. Appl. Math. Ser. B Numer. Anal. 2(2), 205–224 (1965). https://doi.org/10.1137/0702016
Golub, G.H., Greif, C.: On solving block-structured indefinite linear systems. SIAM J. Sci. Comput. 24(6), 2076–2092 (2003). https://doi.org/10.1137/S1064827500375096
Heroux, M.A., et al.: An overview of the trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005). https://doi.org/10.1145/1089014.1089021
Klaij, C.: On the stabilization of finite volume methods with co-located variables for incompressible flow. J. Comput. Phys. 297(C), 84–89 (2015). https://doi.org/10.1016/j.jcp.2015.05.012
Orban, D., Arioli, M.: Iterative solution of symmetric quasi-definite linear systems. SIAM Spotlights. Society for Industrial and Applied Mathematics (2017). https://doi.org/10.1137/1.9781611974737
Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982). https://doi.org/10.1145/355984.355989
Saunders, M.A.: Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numer. Math. 35(4), 588–604 (1995). https://doi.org/10.1007/BF01739829
Saunders, M.A.: Computing projections with LSQR. BIT Numer. Math. 37(1), 96–104 (1997). https://doi.org/10.1007/BF02510175
Ur Rehman, M., Geenen, T., Vuik, C., Segal, G., MacLachlan, S.: On iterative methods for the incompressible stokes problem. Int. J. Numer. Meth. Fluids 65(10), 1180–1200 (2011). https://doi.org/10.1002/fld.2235
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kruse, C., Sosonkina, M., Arioli, M., Tardieu, N., Rüde, U. (2020). Parallel Performance of an Iterative Solver Based on the Golub-Kahan Bidiagonalization. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-43229-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43228-7
Online ISBN: 978-3-030-43229-4
eBook Packages: Computer ScienceComputer Science (R0)