Nothing Special   »   [go: up one dir, main page]

Skip to main content

Algebraic Analysis of Bifurcations and Chaos for Discrete Dynamical Systems

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11989))

  • 457 Accesses

Abstract

This paper deals with the stability, bifurcations and chaotic behaviors of discrete dynamical systems by using methods of symbolic computation. We explain how to reduce the problems of analyzing the stability, bifurcations and chaos induced by snapback repellers to algebraic problems, and solve them by using an algorithmic approach based on methods for solving semi-algebraic systems. The feasibility of the symbolic approach is demonstrated by analyses of the dynamical behaviors for several discrete models.

This work was done while Bo Huang was visiting NYU Courant. The first author wishes to thank Professor Chee Yap for his profound concern. Both authors thank Professor Dongming Wang for his valuable suggestions and the anonymous referees for their helpful comments on improving the presentation. The work was partially supported by China Scholarship Council (No. 201806020128), by the Academic Excellent Foundation of BUAA for PhD Students, by the NSF grant #CCF-1708884, and by the NSFC project 11601023.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, Berlin (1996). https://doi.org/10.1007/b97589

    Book  MATH  Google Scholar 

  2. Aboites, V., Wilson, M., Bosque, L., del Campestre, L.: Tinkerbell chaos in a ring phase-conjugated resonator. Int. J. Pure Appl. Math. 54(3), 429–435 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Multidimensional Systems Theory, pp. 184–232. Reidel, Dordrecht (1985)

    Google Scholar 

  4. Bistritz, Y.: Zero location with respect to the unit circle of directe-time linear system polynomials. Proc. IEEE 72(9), 1131–1142 (1984)

    Article  Google Scholar 

  5. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)

    Article  MathSciNet  Google Scholar 

  6. Dickenstein, A., Millán, M., Shiu, A., Tang, X.: Multistationarity in structured reaction networks. Bull. Math. Biol. 81(5), 1527–1581 (2019)

    Article  MathSciNet  Google Scholar 

  7. Davidchack, R.L., Lai, Y.C., Klebanoff, A., Bollt, E.M.: Towards complete detection of unstable periodic orbits in chaotic systems. Phys. Lett. A 287(1–2), 99–104 (2001)

    Article  MathSciNet  Google Scholar 

  8. Coelho, L.S., Mariani, V.C.: Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning. Comput. Math. Appl. 64(8), 2371–2382 (2012)

    Article  MathSciNet  Google Scholar 

  9. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases \((F4)\). J. Pure Appl. Algebra. 139(1–3), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  10. Galor, O.: Discrete Dynamical Systems. Springer, Berlin (2007). https://doi.org/10.1007/3-540-36776-4

    Book  MATH  Google Scholar 

  11. Glendinning, P.: Bifurcations of snap-back repellers with application to border-collision bifurcations. Int. J. Bifurcat. Chaos 20(2), 479–489 (2010)

    Article  MathSciNet  Google Scholar 

  12. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–76 (1976)

    Article  MathSciNet  Google Scholar 

  13. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. J. Symb. Comput. 24(2), 161–187 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hong, H., Tang, X., Xia, B.: Special algorithm for stability analysis of multistable biological regulatory systems. J. Symb. Comput. 70(1), 112–135 (2015)

    Article  MathSciNet  Google Scholar 

  15. Huang, B., Niu, W.: Analysis of snapback repellers using methods of symbolic computation. Int. J. Bifurcat. Chaos 29(4), 1950054-1-13 (2019)

    Google Scholar 

  16. Kitajima, H., Kawakami, H., Mira, C.: A method to calculate basin bifurcation sets for a two-dimensional nonivertible map. Int. J. Bifurcat. Chaos 10(8), 2001–2014 (2000)

    Article  Google Scholar 

  17. Kaslik, E., Balint, S.: Complex and chaotic dynamics in a discrete-time-delayed Hopfield neural network with ring architecture. Neural Networks 22(10), 1411–1418 (2009)

    Article  Google Scholar 

  18. Li, C., Chen, G.: An improved version of the Marotto theorem. Chaos Solit. Fract. 18(1), 69–77 (2003)

    Article  MathSciNet  Google Scholar 

  19. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Comput. 42(6), 636–667 (2007)

    Article  MathSciNet  Google Scholar 

  20. Li, X., Mou, C., Niu, W., Wang, D.: Stability analysis for discrete biological models using algebraic methods. Math. Comput. Sci. 5(3), 247–262 (2011)

    Article  MathSciNet  Google Scholar 

  21. Mira, C., Barugola, A., Gardini, L.: Chaotic Dynamics in Two-Dimensional Nonvertible Map. World Scientific, Singapore (1996)

    Book  Google Scholar 

  22. Marotto, F.: Snap-back repellers imply chaos in \(\mathbb{R}^n\). J. Math. Anal. Appl. 63(1), 199–223 (1978)

    Article  MathSciNet  Google Scholar 

  23. Marotto, F.: On redefining a snap-back repeller. Chaos Solit. Fract. 25(1), 25–28 (2005)

    Article  MathSciNet  Google Scholar 

  24. Niu, W., Shi, J., Mou, C.: Analysis of codimension 2 bifurcations for high-dimensional discrete systems using symbolic computation methods. Appl. Math. Comput. 273, 934–947 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Stoyanov, B., Kordov, K.: Novel secure pseudo-random number generation scheme based on two Tinkerbell maps. Adv. Stud. Theor. Phys. 9(9), 411–421 (2015)

    Article  Google Scholar 

  26. Sang, B., Huang, B.: Bautin bifurcations of a financial system. Electron. J. Qual. Theory Differ. Equ. 2017(95), 1–22 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wu, W.-T.: Mathematics Mechanization. Science Press/Kluwer Academic, Beijing (2000)

    Google Scholar 

  28. Wang, D.: Elimination Methods. Springer, New York (2001). https://doi.org/10.1007/978-3-7091-6202-6

    Book  MATH  Google Scholar 

  29. Wen, G.: Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys. Rev. E. 72(2), 026201-1-4 (2005)

    Google Scholar 

  30. Yang, L., Xia, B.: Real solution classifications of parametric semi-algebraic systems. In: Algorithmic Algebra and Logic-Proceedings of the A3L, pp. 281–289. Herstel-lung und Verlag, Norderstedt (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, B., Niu, W. (2020). Algebraic Analysis of Bifurcations and Chaos for Discrete Dynamical Systems. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2019. Lecture Notes in Computer Science(), vol 11989. Springer, Cham. https://doi.org/10.1007/978-3-030-43120-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43120-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43119-8

  • Online ISBN: 978-3-030-43120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics