Abstract
Given an arbitrary weighted graph, the Steiner tree problem seeks a minimum-cost tree spanning a given subset of the vertices (terminals). Byrka et al. proposed an interactive method that achieves an approximation ratio of \(1.3863+\epsilon \). Moreover, Goemans et al. shown that it is possible to achieve the same approximation guarantee while only solving hypergraphic LP relaxation once. However, solving hypergraphic LP relaxation is time consuming. This article presents an efficient two-phase heuristic in greedy strategy that achieves an approximation ratio of 1.4295.
This article appeared in 2019 the 2nd International Conference on Information Science and Systems (ICISS), under the title “An Efficient Approximation Algorithm for the Steiner Tree Problem”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for the generalized steiner problem on networks. SIAM J. Comput. 24(3), 440–456 (1995)
Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for prize-collecting steiner tree and TSP. SIAM J. Comput. 40(2), 309–332 (2011)
Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)
Bateni, M., Hajiaghayi, M., Marx, D.: Approximation schemes for steiner forest on planar graphs and graphs of bounded treewidth. J. ACM 58(5), 21:1–21:37 (2011)
Berman, P., Karpinski, M., Zelikovsky, A.: 1.25-approximation algorithm for steiner tree problem with distances 1 and 2. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 86–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03367-4_8
Berman, P., Ramaiyer, V.: Improved approximations for the steiner tree problem. J. Algorithms 17(3), 381–408 (1994)
Bern, M., Plassmann, P.: The steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32(4), 171–176 (1989)
Borchers, A., Du, D.Z.: The k-steiner ratio in graphs. SIAM J. Comput. 26(3), 857–869 (1997)
Byrka, J., Grandoni, F., Rothvoss, T., Sanitá, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)
Caldwell, A.E., Kahng, A.B., Mantik, S., Markov, I.L., Zelikovsky, A.: On wirelength estimations for row-based placement. In: ISPD 1998: Proceedings of the 1998 International Symposium on Physical Design, pp. 4–11. ACM, New York, NY, USA (1998)
Chen, Y.H., Lu, C.L., Tang, C.Y.: On the full and bottleneck full steiner tree problems. In: Warnow, T., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 122–129. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45071-8_14
Chen, Y.H.: An improved approximation algorithm for the terminal steiner tree problem. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 141–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21931-3_12
Chlebík, M., Chlebíková, J.: The steiner tree problem on graphs: Inapproximability results. Theor. Comput. Sci. 406(3), 207–214 (2008). Algorithmic Aspects of Global Computing
Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-weighted steiner tree and group steiner tree in planar graphs. ACM Trans. Algorithms 10(3), 13:1–13:20 (2013)
Drake, D.E., Hougardy, S.: On approximation algorithms for the terminal steiner tree problem. Inf. Process. Lett. 89(1), 15–18 (2004)
Feldmann, A.E., Könemann, J., Olver, N., Sanità, L.: On the equivalence of the bidirected and hypergraphic relaxations for Steiner tree. Math. Program. 160(1), 379–406 (2016)
Ferreira, C.E., de Oliveira Filho, F.M.: New reduction techniques for the group steiner tree problem. SIAM J. Optim. 17(4), 1176–1188 (2006)
Fuchs, B.: A note on the terminal steiner tree problem. Inf. Process. Lett. 87(4), 219–220 (2003)
Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H. Freeman, New York (2002)
Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner tree problem. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1998, pp. 253–259. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1998)
Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality gaps for hypergraphic steiner tree relaxations. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing,TOC 2012, pp. 1161–1176. ACM, New York, NY, USA (2012)
Halperin, E., Kortsarz, G., Krauthgamer, R., Srinivasan, A., Wang, N.: Integrality ratio for group Steiner trees and directed steiner trees. SIAM J. Comput. 36(5), 1494–1511 (2007)
Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 585–594. ACM, New York, NY, USA (2003)
Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner problem in graphs. In: SODA 1999: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–453. Society for Industrial and Applied Mathematics, Philadelphia, ACM, New York (1999)
Hsieh, S.Y., Gao, H.M.: On the partial terminal Steiner tree problem. J. Supercomput. 41(1), 41–52 (2007)
Hsieh, S.-Y., Gao, H.-M., Yang, S.-C.: On the internal Steiner tree problem. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 274–283. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-6_25
Huang, C.W., Lee, C.W., Gao, H.M., Hsieh, S.Y.: The internal Steiner tree problem: hardness and approximations. J. Complex. 29(1), 27–43 (2013)
Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annuals of Discrete Mathematics, vol. 53. Elsevier Science Publishers, Amsterdam (1992)
Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic, Boston (1995)
Karpinski, M., Zelikovsky, A.: New approximation algorithms for the Steiner tree problems. J. Comb. Optim. 1, 47–65 (1997)
Korte, B., Prömel, H.J., Steger, A.: Steiner trees in VLSI-layout. Paths, Flows, and VLSI-Layout, pp. 185–214 (1990)
Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2002, pp. 112–122. ACM, New York, NY, USA (2002)
Lin, G.H., Xue, G.L.: On the terminal steiner tree problem. Inf. Process. Lett. 84(2), 103–107 (2002)
Lu, C.L., Tang, C.Y., Lee, R.C.T.: The full Steiner tree problem. Theor. Comput. Sci. 306(1–3), 55–67 (2003)
Martinez, F.V., de Pina, J.C., Soares, J.: Algorithms for terminal Steiner trees. J. Theor. Comput. Sci. 389(1—-2), 133–142 (2007)
Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C.H., Wu, W.: Improving construction for connected dominating set with Steiner tree in wireless sensor networks. J. Glob. Optim. 35(1), 111–119 (2006)
Prömel, H.J., Steger, A.: RNC-approximation algorithms for the steiner problem. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 559–570. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023489
Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discrete Math. 19(1), 122–134 (2005)
Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem in graphs. Math. Jpn. 24, 573–577 (1980)
Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9(5), 463–470 (1993)
Zelikovsky, A.: Better approximation bounds for the network and euclidean Steiner tree problems. In: Technical report CS-96-06. University of Virginia. Charlottesville, VA, USA (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chen, CY., Hsieh, SY. (2020). An Efficient Approximation Algorithm for the Steiner Tree Problem. In: Du, DZ., Wang, J. (eds) Complexity and Approximation. Lecture Notes in Computer Science(), vol 12000. Springer, Cham. https://doi.org/10.1007/978-3-030-41672-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-41672-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41671-3
Online ISBN: 978-3-030-41672-0
eBook Packages: Computer ScienceComputer Science (R0)