Nothing Special   »   [go: up one dir, main page]

Skip to main content

Designing a Visual Analytics System for Medication Error Screening and Detection

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019)

Abstract

Drug safety analysts at the U.S. Food & Drug Administration analyze medication error reports submitted to the Adverse Event Reporting System (FAERS) to detect and prevent detrimental errors from happening in the future. Currently this review process is time-consuming, involving manual extraction and sense-making of the key information from each report narrative. There is a need for a visual analytics approach that leverages both computational techniques and interactive visualizations to empower analysts to quickly gain insights from reports. To assist analysts responsible for identifying medication errors in these reports, we design an interactive Medication Error Visual analytics (MEV) system. In this paper, we describe the detailed study of the Pharmacovigilance at the FDA and the iterative design process that lead to the final design of MEV technology. MEV a multi-layer treemap based visualization system, guides analysts towards the most critical medication errors by displaying interactive reports distributions over multiple data attributes such as stages, causes and types of errors. A user study with ten drug safety analysts at the FDA confirms that screening and review tasks performed with MEV are perceived as being more efficient as well as easier than when using their existing tools. Expert subjective interviews highlight opportunities for improving MEV and the utilization of visual analytics techniques in general for analyzing critical FAERS reports at scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A \$21 Billion Opportunity National Priorities Partnership convened by the National Quality Forum file (2010). http://www.nehi.net/bendthecurve/sup/documents/Medication_Errors_Brief.pdf. Accessed 07 Jan 2018

  2. Agrawal, A.: Medication errors: prevention using information technology systems. Br. J. Clin. Pharmacol. 67(6), 681–686 (2009). https://doi.org/10.1111/j.1365-2125.2009.03427.x

    Article  Google Scholar 

  3. Alshaikhdeeb, B., Ahmad, K.: Biomedical named entity recognition: a review. Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 889–895 (2016). https://doi.org/10.18517/ijaseit.6.6.1367

    Article  Google Scholar 

  4. Aronson, A.R., Lang, F.M.: An overview of MetaMap: historical perspective and recent advances. J. Am. Med. Inf. Assoc. 17(3), 229–236 (2010). https://doi.org/10.1136/jamia.2009.002733

    Article  Google Scholar 

  5. Asahi, T., Turo, D., Shneiderman, B.: Visual decision-making: using treemaps for the analytic hierarchy process. Craft Inf. Vis., 235–236 (2003). https://doi.org/10.1016/b978-155860915-0/50030-5

    Chapter  Google Scholar 

  6. Authority, P.P.S.: Drug Labeling and Packaging – Looking Beyond What Meets the Eye (2017). http://patientsafety.pa.gov/ADVISORIES/documents/200709_69b.pdf. Accessed 25 June 2019

  7. Bates, D.W., et al.: The costs of adverse drug events in hospitalized patients. Jama 277(4), 307–311 (1997). https://doi.org/10.1001/jama.1997.03540280045032

    Article  Google Scholar 

  8. BIFACT: FAERS Business Intelligence System (FBIS). http://www.bifact.com/faers-bifact.html. Accessed 19 June 2019

  9. Botsis, T., et al.: Decision support environment for medical product safety surveillance. J. Biomed. Inform. 64, 354–362 (2016). https://doi.org/10.1016/j.jbi.2016.07.023

    Article  Google Scholar 

  10. Brooke, J., et al.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)

    Google Scholar 

  11. Brown, E.G., Wood, L., Wood, S.: The medical dictionary for regulatory activities (MedDRA). Drug Saf. 20(2), 109–117 (1999). https://doi.org/10.1002/9780470059210.ch13

    Article  Google Scholar 

  12. CFPB: Consumer Financial Protection Bureau. www.consumerfinance.gov/. Accessed 03 June 2019

  13. Dachselt, R., Frisch, M., Weiland, M.: FacetZoom: a continuous multi-scale widget for navigating hierarchical metadata. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1353–1356. ACM (2008). https://doi.org/10.1145/1357054.1357265

  14. Du, M.: Approximate name matching. NADA, Numerisk Analys och Datalogi, KTH, Kungliga Tekniska Högskolan, Stockholm: un, pp. 3–15 (2005)

    Google Scholar 

  15. Fekete, J.-D., van Wijk, J.J., Stasko, J.T., North, C.: The value of information visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_1

    Chapter  Google Scholar 

  16. Gaunt, M.J.: Preventing 10-Fold Dosage Errors. www.pharmacytimes.com/publications/issue/2017/july2017/preventing-10fold-dosage-errors. Accessed 24 June 2019

  17. Groth, D.P., Streefkerk, K.: Provenance and annotation for visual exploration systems. IEEE Trans. Visual Comput. Graphics 12(6), 1500–1510 (2006). https://doi.org/10.1109/tvcg.2006.101

    Article  Google Scholar 

  18. Harrison, L., Spahn, R., Iannacone, M., Downing, E., Goodall, J.R.: NV: nessus vulnerability visualization for the web. In: Proceedings of the Ninth International Symposium on Visualization for Cyber Security, pp. 25–32. ACM (2012). https://doi.org/10.1145/2379690.2379694

  19. Huckels-Baumgart, S., Manser, T.: Identifying medication error chains from critical incident reports: a new analytic approach. J. Clin. Pharmacol. 54(10), 1188–1197 (2014). https://doi.org/10.1002/jcph.319

    Article  Google Scholar 

  20. Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985). https://doi.org/10.1007/BF0189835

    Article  MathSciNet  MATH  Google Scholar 

  21. Jia, P., Zhang, L., Chen, J., Zhao, P., Zhang, M.: The effects of clinical decision support systems on medication safety: an overview. Pub. Libr. Sci. One 11(12), e0167683 (2016). https://doi.org/10.1371/journal.pone.0167683

    Article  Google Scholar 

  22. Kakar, T., et al.: DEVES: interactive signal analytics for drug safety. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1891–1894 (2018). https://doi.org/10.1145/3269206.3269211

  23. Kakar, T., Qin, X., Rundensteiner, E.A., Harrison, L., Sahoo, S.K., De, S.: DIVA: towards validation of hypothesized drug-drug interactions via visual analysis. In: Eurographics (2019). https://doi.org/10.1111/cgf.13674

    Article  Google Scholar 

  24. Kakar, T., et al.: MEV: visual analytics for medication error detection. In: 2019 International Conference on Information Visualization Theory and Applications (IVAPP), Prague. SciTePress (2019). https://doi.org/10.5220/0007366200720082

  25. Kohn, L.T., Corrigan, J., Donaldson, M.S., et al.: To Err is Human: Building a Safer Health System, vol. 6. National Academy Press, Washington, DC (2000). https://doi.org/10.1016/s1051-0443(01)70072-3

    Book  Google Scholar 

  26. Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies in information visualization: seven scenarios. IEEE Trans. Visual Comput. Graphics 18(9), 1520–1536 (2011). https://doi.org/10.1109/TVCG.2011.279

    Article  Google Scholar 

  27. Lee, B., Smith, G., Robertson, G.G., et al.: FacetLens: exposing trends and relationships to support sensemaking within faceted datasets. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1293–1302. ACM (2009). https://doi.org/10.1145/1518701.1518896

  28. Liu, Z., Stasko, J., Sullivan, T.: SellTrend: inter-attribute visual analysis of temporal transaction data. IEEE Trans. Visual Comput. Graphics 15(6), 1025–1032 (2009). https://doi.org/10.1109/TVCG.2009.180

    Article  Google Scholar 

  29. Marais, K.B., Robichaud, M.R.: Analysis of trends in aviation maintenance risk: an empirical approach. Reliab. Eng. Syst. Saf. 106, 104–118 (2012). https://doi.org/10.1016/j.ress.2012.06.003

    Article  Google Scholar 

  30. McKnight, P.E., Najab, J.: Mann-Whitney U test. In: The Corsini Encyclopedia of Psychology, pp. 1–1 (2010). https://doi.org/10.1002/9780470479216.corpsy0524

  31. Morimoto, T., Gandhi, T., Seger, A., Hsieh, T., Bates, D.: Adverse drug events and medication errors: detection and classification methods. BMJ Qual. Saf. 13(4), 306–314 (2004)

    Article  Google Scholar 

  32. Munzner, T.: Visualization Analysis and Design. AK Peters/CRC Press, Boca Raton (2014). https://doi.org/10.1201/b17511

    Book  Google Scholar 

  33. NCC-MERP: National Coordinating Council for Medication Error Reporting and Prevention (1995), http://www.nccmerp.org/. Accessed 28 Feb 2018

  34. Ozturk, S., Kayaalp, M., McDonald, C.J.: Visualization of patient prescription history data in emergency care. In: AMIA Annual Symposium Proceedings. vol. 2014, p. 963. American Medical Informatics Association (2014)

    Google Scholar 

  35. Patel, I., Balkrishnan, R.: Medication error management around the globe: an overview. Indian J. Pharm. Sci. 72(5), 539 (2010). https://doi.org/10.4103/0250-474x.78518

    Article  Google Scholar 

  36. Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: IEEE Symposium on Information Visualization, pp. 89–96. IEEE (2004). https://doi.org/10.1109/INFVIS.2004.15

  37. Singh, R., Pace, W., Singh, A., Fox, C., Singh, G.: A visual computer interface concept for making error reporting useful at the point of care. In: Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 1: Assessment). Agency for Healthcare Research and Quality (2008)

    Google Scholar 

  38. Smith, G., Czerwinski, M., Meyers, B.R., et al.: FacetMap: a scalable search and browse visualization. IEEE Trans. Visual Comput. Graphics 12(5), 797–804 (2006). https://doi.org/10.1109/TVCG.2006.142

    Article  Google Scholar 

  39. Stasko, J., Gørg, C., Liu, Z.: JigSaw: supporting investigative analysis through interactive visualization. Inf. Visual. 7(2), 118–132 (2008). https://doi.org/10.1057/palgrave.ivs.9500180

    Article  Google Scholar 

  40. Varkey, P., Cunningham, J., Bisping, S.: Improving medication reconciliation in the outpatient setting. Jt. Comm. J. Qual. Patient Saf. 33(5), 286–292 (2007)

    Article  Google Scholar 

  41. Wunnava, S., Qin, X., Kakar, T., Socrates, V., Wallace, A., Rundensteiner, E.A.: Towards transforming FDA adverse event narratives into actionable structured data for improved pharmacovigilance. In: Proceedings of the Symposium on Applied Computing, pp. 777–782. ACM (2017). https://doi.org/10.1145/3019612.3022875

  42. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 2145–2158 (2018)

    Google Scholar 

  43. Zhou, S., Kang, H., Yao, B., Gong, Y.: Analyzing medication error reports in clinical settings: an automated pipeline approach. In: AMIA Annual Symposium Proceedings, vol. 2018, p. 1611. American Medical Informatics Association (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tabassum Kakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kakar, T. et al. (2020). Designing a Visual Analytics System for Medication Error Screening and Detection. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41590-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41589-1

  • Online ISBN: 978-3-030-41590-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics