Abstract
Drug safety analysts at the U.S. Food & Drug Administration analyze medication error reports submitted to the Adverse Event Reporting System (FAERS) to detect and prevent detrimental errors from happening in the future. Currently this review process is time-consuming, involving manual extraction and sense-making of the key information from each report narrative. There is a need for a visual analytics approach that leverages both computational techniques and interactive visualizations to empower analysts to quickly gain insights from reports. To assist analysts responsible for identifying medication errors in these reports, we design an interactive Medication Error Visual analytics (MEV) system. In this paper, we describe the detailed study of the Pharmacovigilance at the FDA and the iterative design process that lead to the final design of MEV technology. MEV a multi-layer treemap based visualization system, guides analysts towards the most critical medication errors by displaying interactive reports distributions over multiple data attributes such as stages, causes and types of errors. A user study with ten drug safety analysts at the FDA confirms that screening and review tasks performed with MEV are perceived as being more efficient as well as easier than when using their existing tools. Expert subjective interviews highlight opportunities for improving MEV and the utilization of visual analytics techniques in general for analyzing critical FAERS reports at scale.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A \$21 Billion Opportunity National Priorities Partnership convened by the National Quality Forum file (2010). http://www.nehi.net/bendthecurve/sup/documents/Medication_Errors_Brief.pdf. Accessed 07 Jan 2018
Agrawal, A.: Medication errors: prevention using information technology systems. Br. J. Clin. Pharmacol. 67(6), 681–686 (2009). https://doi.org/10.1111/j.1365-2125.2009.03427.x
Alshaikhdeeb, B., Ahmad, K.: Biomedical named entity recognition: a review. Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 889–895 (2016). https://doi.org/10.18517/ijaseit.6.6.1367
Aronson, A.R., Lang, F.M.: An overview of MetaMap: historical perspective and recent advances. J. Am. Med. Inf. Assoc. 17(3), 229–236 (2010). https://doi.org/10.1136/jamia.2009.002733
Asahi, T., Turo, D., Shneiderman, B.: Visual decision-making: using treemaps for the analytic hierarchy process. Craft Inf. Vis., 235–236 (2003). https://doi.org/10.1016/b978-155860915-0/50030-5
Authority, P.P.S.: Drug Labeling and Packaging – Looking Beyond What Meets the Eye (2017). http://patientsafety.pa.gov/ADVISORIES/documents/200709_69b.pdf. Accessed 25 June 2019
Bates, D.W., et al.: The costs of adverse drug events in hospitalized patients. Jama 277(4), 307–311 (1997). https://doi.org/10.1001/jama.1997.03540280045032
BIFACT: FAERS Business Intelligence System (FBIS). http://www.bifact.com/faers-bifact.html. Accessed 19 June 2019
Botsis, T., et al.: Decision support environment for medical product safety surveillance. J. Biomed. Inform. 64, 354–362 (2016). https://doi.org/10.1016/j.jbi.2016.07.023
Brooke, J., et al.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)
Brown, E.G., Wood, L., Wood, S.: The medical dictionary for regulatory activities (MedDRA). Drug Saf. 20(2), 109–117 (1999). https://doi.org/10.1002/9780470059210.ch13
CFPB: Consumer Financial Protection Bureau. www.consumerfinance.gov/. Accessed 03 June 2019
Dachselt, R., Frisch, M., Weiland, M.: FacetZoom: a continuous multi-scale widget for navigating hierarchical metadata. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1353–1356. ACM (2008). https://doi.org/10.1145/1357054.1357265
Du, M.: Approximate name matching. NADA, Numerisk Analys och Datalogi, KTH, Kungliga Tekniska Högskolan, Stockholm: un, pp. 3–15 (2005)
Fekete, J.-D., van Wijk, J.J., Stasko, J.T., North, C.: The value of information visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_1
Gaunt, M.J.: Preventing 10-Fold Dosage Errors. www.pharmacytimes.com/publications/issue/2017/july2017/preventing-10fold-dosage-errors. Accessed 24 June 2019
Groth, D.P., Streefkerk, K.: Provenance and annotation for visual exploration systems. IEEE Trans. Visual Comput. Graphics 12(6), 1500–1510 (2006). https://doi.org/10.1109/tvcg.2006.101
Harrison, L., Spahn, R., Iannacone, M., Downing, E., Goodall, J.R.: NV: nessus vulnerability visualization for the web. In: Proceedings of the Ninth International Symposium on Visualization for Cyber Security, pp. 25–32. ACM (2012). https://doi.org/10.1145/2379690.2379694
Huckels-Baumgart, S., Manser, T.: Identifying medication error chains from critical incident reports: a new analytic approach. J. Clin. Pharmacol. 54(10), 1188–1197 (2014). https://doi.org/10.1002/jcph.319
Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985). https://doi.org/10.1007/BF0189835
Jia, P., Zhang, L., Chen, J., Zhao, P., Zhang, M.: The effects of clinical decision support systems on medication safety: an overview. Pub. Libr. Sci. One 11(12), e0167683 (2016). https://doi.org/10.1371/journal.pone.0167683
Kakar, T., et al.: DEVES: interactive signal analytics for drug safety. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1891–1894 (2018). https://doi.org/10.1145/3269206.3269211
Kakar, T., Qin, X., Rundensteiner, E.A., Harrison, L., Sahoo, S.K., De, S.: DIVA: towards validation of hypothesized drug-drug interactions via visual analysis. In: Eurographics (2019). https://doi.org/10.1111/cgf.13674
Kakar, T., et al.: MEV: visual analytics for medication error detection. In: 2019 International Conference on Information Visualization Theory and Applications (IVAPP), Prague. SciTePress (2019). https://doi.org/10.5220/0007366200720082
Kohn, L.T., Corrigan, J., Donaldson, M.S., et al.: To Err is Human: Building a Safer Health System, vol. 6. National Academy Press, Washington, DC (2000). https://doi.org/10.1016/s1051-0443(01)70072-3
Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies in information visualization: seven scenarios. IEEE Trans. Visual Comput. Graphics 18(9), 1520–1536 (2011). https://doi.org/10.1109/TVCG.2011.279
Lee, B., Smith, G., Robertson, G.G., et al.: FacetLens: exposing trends and relationships to support sensemaking within faceted datasets. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1293–1302. ACM (2009). https://doi.org/10.1145/1518701.1518896
Liu, Z., Stasko, J., Sullivan, T.: SellTrend: inter-attribute visual analysis of temporal transaction data. IEEE Trans. Visual Comput. Graphics 15(6), 1025–1032 (2009). https://doi.org/10.1109/TVCG.2009.180
Marais, K.B., Robichaud, M.R.: Analysis of trends in aviation maintenance risk: an empirical approach. Reliab. Eng. Syst. Saf. 106, 104–118 (2012). https://doi.org/10.1016/j.ress.2012.06.003
McKnight, P.E., Najab, J.: Mann-Whitney U test. In: The Corsini Encyclopedia of Psychology, pp. 1–1 (2010). https://doi.org/10.1002/9780470479216.corpsy0524
Morimoto, T., Gandhi, T., Seger, A., Hsieh, T., Bates, D.: Adverse drug events and medication errors: detection and classification methods. BMJ Qual. Saf. 13(4), 306–314 (2004)
Munzner, T.: Visualization Analysis and Design. AK Peters/CRC Press, Boca Raton (2014). https://doi.org/10.1201/b17511
NCC-MERP: National Coordinating Council for Medication Error Reporting and Prevention (1995), http://www.nccmerp.org/. Accessed 28 Feb 2018
Ozturk, S., Kayaalp, M., McDonald, C.J.: Visualization of patient prescription history data in emergency care. In: AMIA Annual Symposium Proceedings. vol. 2014, p. 963. American Medical Informatics Association (2014)
Patel, I., Balkrishnan, R.: Medication error management around the globe: an overview. Indian J. Pharm. Sci. 72(5), 539 (2010). https://doi.org/10.4103/0250-474x.78518
Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: IEEE Symposium on Information Visualization, pp. 89–96. IEEE (2004). https://doi.org/10.1109/INFVIS.2004.15
Singh, R., Pace, W., Singh, A., Fox, C., Singh, G.: A visual computer interface concept for making error reporting useful at the point of care. In: Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 1: Assessment). Agency for Healthcare Research and Quality (2008)
Smith, G., Czerwinski, M., Meyers, B.R., et al.: FacetMap: a scalable search and browse visualization. IEEE Trans. Visual Comput. Graphics 12(5), 797–804 (2006). https://doi.org/10.1109/TVCG.2006.142
Stasko, J., Gørg, C., Liu, Z.: JigSaw: supporting investigative analysis through interactive visualization. Inf. Visual. 7(2), 118–132 (2008). https://doi.org/10.1057/palgrave.ivs.9500180
Varkey, P., Cunningham, J., Bisping, S.: Improving medication reconciliation in the outpatient setting. Jt. Comm. J. Qual. Patient Saf. 33(5), 286–292 (2007)
Wunnava, S., Qin, X., Kakar, T., Socrates, V., Wallace, A., Rundensteiner, E.A.: Towards transforming FDA adverse event narratives into actionable structured data for improved pharmacovigilance. In: Proceedings of the Symposium on Applied Computing, pp. 777–782. ACM (2017). https://doi.org/10.1145/3019612.3022875
Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 2145–2158 (2018)
Zhou, S., Kang, H., Yao, B., Gong, Y.: Analyzing medication error reports in clinical settings: an automated pipeline approach. In: AMIA Annual Symposium Proceedings, vol. 2018, p. 1611. American Medical Informatics Association (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kakar, T. et al. (2020). Designing a Visual Analytics System for Medication Error Screening and Detection. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-41590-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41589-1
Online ISBN: 978-3-030-41590-7
eBook Packages: Computer ScienceComputer Science (R0)