Abstract
Attribute-based encryption (ABE) is a standard method for achieving access control using cryptography, and is related to many other powerful primitives such as functional encryption. While classical pairing based ABE schemes support only boolean formulas as access policy, the first ABE scheme for arbitrary polynomial size circuits is given in [GVW13], and its security is based on LWE assumption. However, the GVW13 scheme is a key policy ABE (KP-ABE), and whether their method can be used to construct a ciphertext policy ABE (CP-ABE) scheme is currently unknown.
In this paper, we present the first direct construction (not from universal circuits) of CP-ABE scheme for circuits. Similar to the two-to-one recoding technique used in GVW13, we introduce three-to-one recoding, and use it to construct our scheme, which can be proved for selective security assuming that LWE problem is hard, for arbitrary polynomial size circuits. Compared with universal circuit based constructions, our scheme is simpler and has lesser decryption cost.
This work is supported by the National Key Research and Development Program of China (No. 2016QY071401).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_6
Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_17
Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2
Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1
Bert, P., Fouque, P.-A., Roux-Langlois, A., Sabt, M.: Practical implementation of ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 271–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_13
Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)
Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_14
Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_8
Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_13
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28
Chen, C., Zhang, Z., Feng, D.: Efficient ciphertext policy attribute-based encryption with constant-size ciphertext and constant computation-cost. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24316-5_8
Chen, Z., Zhang, P., Zhang, F., Huang, J.: Ciphertext policy attribute-based encryption supporting unbounded attribute space from R-LWE. KSII Trans. Internet Inf. Syst. 11(4), 2292–2309 (2017)
Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 456–465 (2007)
Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_27
Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Symposium on the Theory of Computing, pp. 467–476 (2013)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Symposium on the Theory of Computing, pp. 197–206 (2007)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Symposium on the Theory of Computing, pp. 545–554 (2013)
Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute based encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_47
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98 (2006)
Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4
Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_12
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 195–203 (2007)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34 (2009)
Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 463–474 (2013)
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27
Wang, Y.: Lattice ciphertext policy attribute-based encryption in the standard model. Int. J. Netw. Secur. 16, 444–451 (2014)
Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4
Zhang, J., Zhang, Z., Ge, A.: Ciphertext policy attribute-based encryption from lattices. In: Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security, pp. 16–17 (2012)
Zhao, J., Gao, H., Hu, B.: Ciphertext-policy attribute-based encryption for circuits from lattices under weak security model. In: Zhang, H., Zhao, B., Yan, F. (eds.) CTCIS 2018. CCIS, vol. 960, pp. 1–15. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5913-2_1
Zhu, W., Jianping, Y., Wang, T., Zhang, P., Xie, W.: Efficient attribute-based encryption from R-LWE. China J. Electron 23(4), 778–782 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Correctness and Security of Three-to-One Recoding from LWE
A Correctness and Security of Three-to-One Recoding from LWE
Correctness. We define the sets \(\varPhi _{\mathbf {A},\mathbf {s},j}\) for \(\mathsf {pk}:=\mathbf {A}\in \mathbb {Z}_q^{n\times m}\), \(\mathbf {s}\in \mathbb {Z}_q^n\) and \(j\in [0,d_\mathrm {max}]\) as follows:
Given this definition:
-
Observe that when \(\mathbf {e}\in \chi ^m\), \(\Vert \mathbf {e}\Vert _\infty \le B\) by the definition of \(\chi \) and B. So \(\mathrm {Pr}[\mathsf {Encode}(\mathbf {A,s})\in \varPhi _{\mathbf {A},\mathbf {s},0}]=1\).
-
\(\varPhi _{\mathbf {A,s},0}\subseteq \varPhi _{\mathbf {A,s},1}\subseteq ...\subseteq \varPhi _{\mathbf {A,s},d_\mathrm {max}}\), by definition of the sets above.
-
For any two encodings \(\mathbf {\phi }=\mathbf {A}^T\mathbf {s}+\mathbf {e}\), \(\mathbf {\phi }'=\mathbf {A}^T\mathbf {s}+\mathbf {e}'\in \varPhi _{\mathbf {A,s},d_\mathrm {max}}\):
$$\begin{aligned} \Vert \mathbf {\phi }-\mathbf {\phi }'\Vert _\infty =\Vert \mathbf {e}-\mathbf {e}'\Vert _\infty \le 3\cdot B\cdot (3\sigma m\sqrt{m})^{d_\mathrm {max}} < q/4, \end{aligned}$$which holds as long as \(n\cdot O(n^2\log q)^{d_\mathrm {max}}<q/4\). Thus, \(\mathbf {\phi }\) and \(\mathbf {\phi }'\) are “close”, and by the correctness property of the symmetric encryption scheme \((\mathsf {E,D})\) described above, \(\mathsf {D}(\mathbf {\phi }',\mathsf {E}(\mathbf {\phi },\mathbf {\mu })) =\mathbf {\mu }\) for any \(\mathbf {\mu }\in \{0,1\}^m\).
-
Consider three encodings \(\mathbf {\phi }_0\in \varPhi _{\mathbf {A}_0,\mathbf {s},j_0}\), \(\mathbf {\phi }_1\in \varPhi _{\mathbf {A}_1,\mathbf {s},j_1}\) and \(\mathbf {\phi }_2\in \varPhi _{\mathbf {A}_2,\mathbf {s},j_2}\), for any \(j_0,j_1,j_2\in [0,d_\mathrm {max}-1]\), any \(\mathbf {A}_0,\mathbf {A}_1,\mathbf {A}_2\in \mathbb {Z}_q^{n\times m}\) and \(\mathbf {s}\in \mathbb {Z}_q^n\). Then, \(\mathbf {\phi }_0=\mathbf {A}_0^T\mathbf {s}+\mathbf {e}_0\), \(\mathbf {\phi }_1=\mathbf {A}_1^T\mathbf {s}+\mathbf {e}_1\) and \(\mathbf {\phi }_2=\mathbf {A}_2^T\mathbf {s}+\mathbf {e}_2\), where \(\Vert \mathbf {e}_0\Vert _\infty \le B(3\sigma m\sqrt{m})^{j_0}\), \(\Vert \mathbf {e}_1\Vert _\infty \le B(3\sigma m\sqrt{m})^{j_1}\) and \(\Vert \mathbf {e}_2\Vert _\infty \le B(3\sigma m\sqrt{m})^{j_2}\). Then, the recoding \(\mathbf {\phi }_\mathrm {tgt}\) is computed as follows:
$$ \begin{array}{ll} \mathbf {\phi }_\mathrm {tgt}^T &{}:= [\mathbf {\phi }_0^T\Vert \mathbf {\phi }_1^T\Vert \mathbf {\phi }_2^T]\mathbf {R}_{0,1,2}^\mathrm {tgt} \\ &{}=[\mathbf {s}^T\mathbf {A}_0+\mathbf {e}_0^T\Vert \mathbf {s}^T\mathbf {A}_1+\mathbf {e}_1^T\Vert \mathbf {s}^T\mathbf {A}_2+\mathbf {e}_2^T]\mathbf {R}_{0,1,2}^\mathrm {tgt} \\ &{}=\mathbf {s}^T[\mathbf {A}_0\Vert \mathbf {A}_1\Vert \mathbf {A}_2]\mathbf {R}^\mathrm {tgt}_{0,1,2}+[\mathbf {e}_0^T\Vert \mathbf {e}_1^T\Vert \mathbf {e}_2^T]\mathbf {R}^\mathrm {tgt}_{0,1,2} \\ &{}=\mathbf {s}^T\mathbf {A}_\mathrm {tgt}+\mathbf {e}_\mathrm {tgt}^T \end{array} $$where \(\mathbf {e}_\mathrm {tgt}:=[\mathbf {e}_0^T\Vert \mathbf {e}_1^T\Vert \mathbf {e}_2^T]\mathbf {R}^\mathrm {tgt}_{0,1,2}\). Thus, we have:
$$ \begin{array}{ll} \Vert \mathbf {e}_\mathrm {tgt}\Vert _\infty &{}:= m\cdot \Vert \mathbf {R}_{0,1,2}^\mathrm {tgt}\Vert _\infty \cdot (\Vert \mathbf {e}_0\Vert _\infty +\Vert \mathbf {e}_1\Vert _\infty +\Vert \mathbf {e}_0\Vert _\infty ) \\ &{}\le m\cdot \sigma \sqrt{m}\cdot (B\cdot (3\sigma m\sqrt{m})^{j_0}+B\cdot (3\sigma m\sqrt{m})^{j_1}+B\cdot (3\sigma m\sqrt{m})^{j_2})\\ &{}\le B\cdot (3\sigma m\sqrt{m})^{\mathrm {max}(j_0,j_1,j_2)+1} \end{array} $$and we complete the proof.
Key Indistinguishability. Let \((\mathbf {A}_1,\mathbf {T}_1),(\mathbf {A}_2,\mathbf {T}_2)\leftarrow \mathsf {TrapSamp}(1^n,1^m,q)\), and \(\mathbf {R}_1,\mathbf {R}_2\xleftarrow {\$} D_{\mathbb {Z}^m,\sigma }^m\). By the property of lattice trapdoors, we can see that the following two distribution \((\mathbf {U},\mathbf {R}_0)\):
-
\((\mathbf {A}_0,\mathbf {T}_0)\leftarrow \mathsf {TrapSamp}(1^n,1^m,q)\); \(\mathbf {U}\xleftarrow {\$}\mathbb {Z}_q^{n\times m}\), \(\mathbf {R}\leftarrow \mathsf {SampleD}(\mathbf {A,T},\mathbf {U},\sigma )\);
-
\((\mathbf {A}_0,\mathbf {T}_0)\leftarrow \mathsf {TrapSamp}(1^n,1^m,q)\); \(\mathbf {R_0}\xleftarrow {\$}D_{\mathbb {Z}^m,\sigma }^m\), \(\mathbf {U}:=\mathbf {A}_0\mathbf {R}_0\).
are statistically indistinguishable. Thus for the two distributions, \((\mathbf {A}_\mathrm {tgt}:=\mathbf {U}+\mathbf {A}_1\mathbf {R}_1+\mathbf {A}_2\mathbf {R}_2\ \mathrm {mod}\ q, \mathbf {R}=[\mathbf {R}_0^T\Vert \mathbf {R}_1^T\Vert \mathbf {R}_2^T]^T)\) are statistically indistinguishable. In the first distribution, we change the sampling of \(\mathbf {U}\) into: \(\mathbf {A}_\mathrm {tgt}\xleftarrow {\$}\mathbb {Z}_q^{n\times m}\), \(\mathbf {U}:=\mathbf {A}_\mathrm {tgt}-\mathbf {A}_1\mathbf {R}_1-\mathbf {A}_2\mathbf {R}_2\ \mathrm {mod}\ q\), which does not change the distribution, and \(\mathbf {R}\) is generated from \(\mathsf {ReKeyGen3}(\mathbf {A}_0,\mathbf {A}_1,\mathbf {A}_2,\mathbf {T}_0,\mathbf {A}_\mathrm {tgt})\) in the first distribution. Also \((\mathbf {A}_\mathrm {tgt},\mathbf {R})\) are generated from \(\mathsf {SimReKeyGen3}(\mathbf {A}_0,\mathbf {A}_1,\mathbf {A}_2)\) in the second distribution. Thus we have the recoding simulation property.
Similarly, each recoding key generated from \(\mathsf {ReKeyGen3}(\mathbf {A}_0,\mathbf {A}_1,\mathbf {A}_2,\mathbf {T}_i,\mathbf {A}_\mathrm {tgt})\) for \(i\in \{0,1,2\}\) is statistically indistinguishable from the recoding key generated from \(\mathsf {SimReKeyGen3}(\mathbf {A}_0,\mathbf {A}_1,\mathbf {A}_2)\). So the recoding keys generated from all four methods are statistically indistinguishable.
Correlated Pseudorandomness
We construct the following interactive games. Let Game 0 be the original game.
Game 1: Instead of letting \((\mathsf {pk}_i,\mathsf {sk}_i)\leftarrow \mathsf {Keygen(pp)}\), we let \(\mathsf {pk}_i\xleftarrow {\$}\mathbb {Z}_q^{n\times m}\). Game 1 is statistically indistinguishable from Game 0 because of the property of lattice trapdoors.
Game 2: Instead of letting \(\phi _i=\mathsf {Encode}(\mathsf {pk}_i,s)\) for \(i=1,...,l\) and \(\phi '_0=\mathsf {Encode}(\mathsf {pk}_{l+1},s)\), we let \(\phi _1,...,\phi _l,\phi '_0\xleftarrow {\$}\mathbb {Z}_q^m\). Game 2 is computationally indistinguishable from Game 1 because of LWE assumption.
In Game 2, \(\phi '_0\) and \(\phi '_1\) are both uniformly distributed, so the adversary cannot do better than random guess. Thus we prove the pseudorandomness of the scheme.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, G., Liu, Z., Gu, D. (2020). Ciphertext Policy Attribute-Based Encryption for Circuits from LWE Assumption. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds) Information and Communications Security. ICICS 2019. Lecture Notes in Computer Science(), vol 11999. Springer, Cham. https://doi.org/10.1007/978-3-030-41579-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-41579-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41578-5
Online ISBN: 978-3-030-41579-2
eBook Packages: Computer ScienceComputer Science (R0)