Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dual-Attention Graph Convolutional Network

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12047))

Included in the following conference series:

Abstract

Graph convolutional networks (GCNs) have shown the powerful ability in text structure representation and effectively facilitate the task of text classification. However, challenges still exist in adapting GCN on learning discriminative features from texts due to the main issue of graph variants incurred by the textual complexity and diversity. In this paper, we propose a dual-attention GCN to model the structural information of various texts as well as tackle the graph-invariant problem through embedding two types of attention mechanisms, i.e. the connection-attention and hop-attention, into the classic GCN. To encode various connection patterns between neighbour words, connection-attention adaptively imposes different weights specified to neighbourhoods of each word, which captures the short-term dependencies. On the other hand, the hop-attention applies scaled coefficients to different scopes during the graph diffusion process to make the model learn more about the distribution of context, which captures long-term semantics in an adaptive way. Extensive experiments are conducted on five widely used datasets to evaluate our dual-attention GCN, and the achieved state-of-the-art performance verifies the effectiveness of dual-attention mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1993–2001 (2016)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR (2015)

    Google Scholar 

  3. Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., Sima’an, K.: Graph convolutional encoders for syntax-aware neural machine translation. arXiv preprint arXiv:1704.04675 (2017)

  4. Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally connected networks on graphs. Comput. Sci. (2014)

    Google Scholar 

  5. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). Comput. Sci. (2015)

    Google Scholar 

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  7. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)

    Google Scholar 

  8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  9. Henaff, M., Bruna, J., Lecun, Y.: Deep convolutional networks on graph-structured data. Comput. Sci. (2015)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)

  12. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with multi-task learning. arXiv preprint arXiv:1605.05101 (2016)

  17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119 (2013)

    Google Scholar 

  18. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)

    Google Scholar 

  19. Peng, H., et al.: Large-scale hierarchical text classification with recursively regularized deep graph-CNN. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 1063–1072. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  20. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Netw. 12(1), 145–151 (1999)

    Article  MathSciNet  Google Scholar 

  21. Shen, D., et al.: Baseline needs more love: on simple word-embedding-based models and associated pooling mechanisms. arXiv preprint arXiv:1805.09843 (2018)

  22. Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174. ACM (2015)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  25. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-volume 2, pp. 90–94. Association for Computational Linguistics (2012)

    Google Scholar 

  26. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. arXiv preprint arXiv:1809.05679 (2018)

  27. Zhang, Y., Liu, Q., Song, L.: Sentence-state LSTM for text representation. arXiv preprint arXiv:1805.02474 (2018)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 61772276, 61972204, 61906094), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190452), the fundamental research funds for the central universities (No. 30919011232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhang, T., Zhao, W., Cui, Z., Yang, J. (2020). Dual-Attention Graph Convolutional Network. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41299-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41298-2

  • Online ISBN: 978-3-030-41299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics