Abstract
Monte Carlo methods are convenient to model the electron transport due to single electron hopping. The algorithm allows to incorporate a restriction that due to the Coulomb repulsion each trap can only be occupied by a single electron. With electron spin gaining increasing attention, the trap-assisted electron transport has to be generalized to include the electron spin, especially in the presence of an external magnetic field and with transport between ferromagnetic contacts. An innovative Monte Carlo method to deal with the spin-dependent hopping is presented. When the electron spin is taken into account, the escape transition rates are described by transition matrices which describe the coupled spin and occupation relaxation from the trap. The transport process is represented by a cyclic repetition of consecutive electron hops from the source to a trap and from the trap to the drain. The rates do not depend on the previous hops nor on time. The method allows to evaluate the electron current as well as the low frequency current noise at spin-dependent hopping. Our Monte Carlo approach resolves a controversy between theoretical results found in literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Y., Sahin-Tiras, K., Harmon, N.J., Wohlgenannt, M., Flatt, M.E.: Immense magnetic response of exciplex light emission due to correlated spin-charge dynamics. Phys. Rev. X 6, 011011 (2016)
Song, Y., Dery, H.: Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions. Phys. Rev. Lett. 113, 047205 (2014)
Yue, Z., Prestgard, M.C., Tiwari, A., Raikh, M.E.: Resonant magnetotunneling between normal and ferromagnetic electrodes in relation to the three-terminal spin transport. Phys. Rev. B 91, 195316 (2015)
Wasshuber, C., Kosina, H., Selberherr, S.: SIMON - a simulator for single-electron tunnel devices and circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16, 937–944 (1997)
Korotkov, A.N., Likharev, K.K.: Shot noise suppression at one-dimensional hopping. Phys. Rev. B 61, 15975–15987 (2000)
Halbekorn, R.: Density matrix description of spin-selective radical pair reactions. Molecular Phys. 32, 1491–1493 (1976)
Sverdlov, V., Weinbub, J., Selberherr, S.: Spin-dependent trap-assisted tunneling in magnetic tunnel junctions: a Monte Carlo study. In: Abstract Book International Workshop on Computational Nanotechnology, pp. 88–90 (2017)
Sverdlov, V.A., Korotkov, A.N., Likharev, K.K.: Shot noise suppression at two-dimensional hopping. Phys. Rev. B 63, 081302(R)1–4 (2001)
Acknowledgements
The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sverdlov, V., Selberherr, S. (2020). A Monte Carlo Evaluation of the Current and Low Frequency Current Noise at Spin-Dependent Hopping. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-41032-2_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41031-5
Online ISBN: 978-3-030-41032-2
eBook Packages: Computer ScienceComputer Science (R0)