Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Comparison of Some t-Norms and t-Conorms over the Steady State of a Fuzzy Markov Chain

  • Chapter
  • First Online:
Decision Making under Constraints

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 276))

Abstract

This chapter shows a comparison of several t-norms and t-conorms used to compute the steady state of a fuzzy Markov chain. The effect of every of the selected norms over the mean and variance of a fuzzy Markov chain is evaluated using some simulations. Some recommendations and concluding remarks are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araiza, R., Xiang, G., Kosheleva, O., Skülj, D.: Under interval and fuzzy uncertainty, symmetric Markov chains are more difficult to predict. In: 2007 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), vol. 26, pp. 526–531. IEEE (2007)

    Google Scholar 

  2. Avrachenkov, K.E., Sanchez, E.: Fuzzy Markov chains: specificities and properties. In: IEEE (ed.) 8th IPMU’2000 Conference, Madrid, Spain, pp. 1851–1856. IEEE (2000)

    Google Scholar 

  3. Avrachenkov, K.E., Sanchez, E.: Fuzzy Markov chains and decision-making. Fuzzy Optim. Decis. Mak. 1(2), 143–159 (2002)

    Article  MathSciNet  Google Scholar 

  4. Campos, M.A., Dimuro, G.P., da Rocha Costa, A.C., Kreinovich, V.: Computing 2-step predictions for interval-valued finite stationary Markov chains. Tech. rep., UTEP-CS-03-20 (2003)

    Google Scholar 

  5. Figueroa-García, J.C.: Interval type-2 fuzzy Markov chains: an approach. In: 2007 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), vol. 28, No. 1, pp. 1–6 (2010)

    Google Scholar 

  6. Figueroa-García, J.C.: Advances in Type-2 Fuzzy Sets and Systems, vol. 301, chap. Interval Type-2 Fuzzy Markov Chains, pp. 49–64. Springer (2013)

    Google Scholar 

  7. Figueroa-García, J.C., Kalenatic, D., Lopéz, C.A.: A simulation study on fuzzy Markov chains. Commun. Comput. Inf. Sci. 15(1), 109–117 (2008)

    MATH  Google Scholar 

  8. Figueroa-García, J.C., Kalenatic, D., Lopez, C.A.: Scalarization of fuzzy Markov chains. Lect. Notes Comput. Sci. 6215(1), 110–117 (2010)

    Google Scholar 

  9. Figueroa-García, J.C., Kalenatic, D., López-Bello, C.A.: Interval type-2 fuzzy Markov chains: type reduction. Lect. Notes Comput. Sci. 6839(1), 211–218 (2011)

    Google Scholar 

  10. Gavalec, M.: Reaching matrix period is np-complete. Tatra Mt. Math. Publ. 12(1), 81–88 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Gavalec, M.: Periods of special fuzzy matrices. Tatra Mt. Math. Publ. 16(1), 47–60 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Gavalec, M.: Computing orbit period in max-min algebra. Discret. Appl. Math. 100(1), 49–65 (2000)

    Article  MathSciNet  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers (2009)

    Google Scholar 

  14. Kurano, M., Yasuda, M., Nakagami, J.: Interval methods for uncertain Markov decision processes. In: International Workshop on Markov Processes and Controlled Markov Chains (1999)

    Google Scholar 

  15. Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: A fuzzy approach to Markov decision processes with uncertain transition probabilities. Fuzzy Sets Syst. 157(16), 2674–2682 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets Syst. 1(1), 69–74 (1978)

    Article  MathSciNet  Google Scholar 

  17. Sanchez, E.: Eigen fuzzy sets and fuzzy relations. J. Math. Anal. Appl. 81(1), 399–421 (1981)

    Article  MathSciNet  Google Scholar 

  18. Skulj, D.: Regular finite Markov chains with interval probabilities. In: 5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007 (2007)

    Google Scholar 

  19. Zeng, J., Liu, Z.Q.: Type-2 fuzzy Markov random fields to handwritten character recognition. In: 18th International Conference on Proceedings of Pattern Recognition, 2006, ICPR 2006, vol. 1, pp. 1162–1165 (2006)

    Google Scholar 

Download references

Acknowledgements

Juan Carlos Figueroa-Garcia would like to thank to his mother Maria Irene García for being the most important person in his life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Figueroa-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figueroa-García, J.C. (2020). A Comparison of Some t-Norms and t-Conorms over the Steady State of a Fuzzy Markov Chain. In: Ceberio, M., Kreinovich, V. (eds) Decision Making under Constraints. Studies in Systems, Decision and Control, vol 276. Springer, Cham. https://doi.org/10.1007/978-3-030-40814-5_10

Download citation

Publish with us

Policies and ethics