Abstract
Artificial intelligence (AI) enabled radiomics has evolved immensely especially in the field of oncology. Radiomics provide assistance in diagnosis of cancer, planning of treatment strategy, and prediction of survival. Radiomics in neuro-oncology has progressed significantly in the recent past. Deep learning has outperformed conventional machine learning methods in most image-based applications. Convolutional neural networks (CNNs) have seen some popularity in radiomics, since they do not require hand-crafted features and can automatically extract features during the learning process. In this regard, it is observed that CNN based radiomics could provide state-of-the-art results in neuro-oncology, similar to the recent success of such methods in a wide spectrum of medical image analysis applications. Herein we present a review of the most recent best practices and establish the future trends for AI enabled radiomics in neuro-oncology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
American Brain Tumor Association. http://abta.pub30.convio.net/about-us/news/brain-tumor-statistics/. Accessed 07 Jan 2019
Cancer.net. https://www.cancer.net/cancer-types/brain-tumor/statistics. Accessed 07 Jan 2019
UCSF health. https://www.ucsfhealth.org/conditions/brain_tumor/treatment.html. Accessed 07 Jan 2019
Abbasi, S., Tajeripour, F.: Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 219, 526–535 (2017)
Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)
Alex, V., Safwan, M., Krishnamurthi, G.: Automatic segmentation and overall survival prediction in gliomas using fully convolutional neural network and texture analysis. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 216–225. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_19
Altaf, T., Anwar, S.M., Gul, N., Majeed, M.N., Majid, M.: Multi-class alzheimer’s disease classification using image and clinical features. Biomed. Signal Process. Control 43, 64–74 (2018)
Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. J. Med. Syst. 42(11), 226 (2018)
Ateeq, T., et al.: Ensemble-classifiers-assisted detection of cerebral microbleeds in brain MRI. Comput. Electr. Eng. 69, 768–781 (2018)
Ayadi, W., Elhamzi, W., Charfi, I., Atri, M.: A hybrid feature extraction approach for brain MRI classification based on bag-of-words. Biomed. Signal Process. Control 48, 144–152 (2019)
Bagci, U., Yao, J., Miller-Jaster, K., Chen, X., Mollura, D.J.: Predicting future morphological changes of lesions from radiotracer uptake in 18F-FDG-PET images. PLoS ONE 8(2), e57105 (2013)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)
Buty, M., Xu, Z., Gao, M., Bagci, U., Wu, A., Mollura, D.J.: Characterization of lung nodule malignancy using hybrid shape and appearance features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 662–670. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_77
Chang, K., et al.: Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging. Clin. Cancer Res. 24(5), 1073–1081 (2018)
Farooq, A., Anwar, S., Awais, M., Alnowami, M.: Artificial intelligence based smart diagnosis of alzheimer’s disease and mild cognitive impairment. In: 2017 International Smart cities conference (ISC2), pp. 1–4. IEEE (2017)
Fetit, A.E., et al.: Radiomics in paediatric neuro-oncology: a multicentre study on MRI texture analysis. NMR Biomed. 31(1), e3781 (2018)
Giacalone, M., et al.: Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke. Med. Image Anal. 50, 117–126 (2018)
Giardino, A., et al.: Role of imaging in the era of precision medicine. Acad. Radiol. 24(5), 639–649 (2017)
Gilanie, G., Bajwa, U.I., Waraich, M.M., Habib, Z., Ullah, H., Nasir, M.: Classification of normal and abnormal brain MRI slices using gabor texture and support vector machines. Signal Image Video Process. 12(3), 479–487 (2018)
Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2015)
Gupta, N., Bhatele, P., Khanna, P.: Glioma detection on brain MRIs using texture and morphological features with ensemble learning. Biomed. Signal Process. Control 47, 115–125 (2019)
Haralick, R.M., Shanmugam, K., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)
Hussain, S., Anwar, S.M., Majid, M.: Brain tumor segmentation using cascaded deep convolutional neural network. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1998–2001. IEEE (2017)
Hussain, S., Anwar, S.M., Majid, M.: Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261 (2018)
Jiang, Y., et al.: Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine 36, 171–182 (2018)
Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)
Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14
Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
Kotrotsou, A., Zinn, P.O., Colen, R.R.: Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn. Reson. Imaging Clin. 24(4), 719–729 (2016)
Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012)
Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749 (2017)
Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7(1), 10353 (2017)
Liu, X., et al.: A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. NeuroImage: Clin. 20, 1070–1077 (2018)
Liu, Y., et al.: A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE 12(10), e0185844 (2017)
Liu, Z., et al.: Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. NeuroImage: Clin. 19, 271–278 (2018)
Lohmann, P., et al.: Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NeuroImage: Clin. 20, 537–542 (2018)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Nabizadeh, N., Kubat, M.: Brain tumors detection and segmentation in MR images: gabor wavelet vs. statistical features. Comput. Electr. Eng. 45, 286–301 (2015)
Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recogn. 71, 158–172 (2017)
Nanni, L., Salvatore, C., Cerasa, A., Castiglioni, I., Initiative, A.D.N., et al.: Combining multiple approaches for the early diagnosis of alzheimer’s disease. Pattern Recogn. Lett. 84, 259–266 (2016)
Nie, D., et al.: Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci. Rep. 9(1), 1103 (2019)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 7, 971–987 (2002)
Parmar, C., et al.: Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 9(7), e102107 (2014)
Polepaka, S., Rao, C.S., Mohan, M.C.: IDSS-based two stage classification of brain tumor using SVM. Health Technol., 1–10 (2019)
Qian, Z., et al.: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett. 451, 128–135 (2019)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Shen, C., et al.: Building CT radiomics based nomogram for preoperative esophageal cancer patients lymph node metastasis prediction. Transl. Oncol. 11(3), 815–824 (2018)
Singh, K.H.R.: A comparison of gray-level run length matrix and gray-level co-occurrence matrix towards cereal grain classification. Int. J. Comput. Eng. Technol. (IJCET) 7(6), 9–17 (2016)
Song, G., et al.: A noninvasive system for the automatic detection of gliomas based on hybrid features and PSO-KSVM. IEEE Access 7, 13842–13855 (2019)
Subramanyam, M., Goyal, J.: Translational biomarkers: from discovery and development to clinical practice. Drug Discov. Today: Technol. 21, 3–10 (2016)
Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16
Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big data 3(1), 9 (2016)
Wong, K.C., Syeda-Mahmood, T., Moradi, M.: Building medical image classifiers with very limited data using segmentation networks. Med. Image Anal. 49, 105–116 (2018)
Wu, S., et al.: Development and validation of an MRI-based radiomics signature for the preoperative prediction of lymph node metastasis in bladder cancer. EBioMedicine 34, 76–84 (2018)
Yasaka, K., Akai, H., Kunimatsu, A., Kiryu, S., Abe, O.: Deep learning with convolutional neural network in radiology. Japan. J. Radiol. 36(4), 257–272 (2018)
Zhang, Z., et al.: A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur. Radiol. 28(6), 2255–2263 (2018)
Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y.: A deep learning model integrating FCNNS and CRFS for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)
Zhou, H., et al.: Diagnosis of distant metastasis of lung cancer: based on clinical and radiomic features. Transl. Oncol. 11(1), 31–36 (2018)
Zhou, M., Chaudhury, B., Hall, L.O., Goldgof, D.B., Gillies, R.J., Gatenby, R.A.: Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J. Magn. Reson. Imaging 46(1), 115–123 (2017)
Zhou, M., et al.: Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. Am. J. Neuroradiol. 39(2), 208–216 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Anwar, S.M., Altaf, T., Rafique, K., RaviPrakash, H., Mohy-ud-Din, H., Bagci, U. (2020). A Survey on Recent Advancements for AI Enabled Radiomics in Neuro-Oncology. In: Mohy-ud-Din, H., Rathore, S. (eds) Radiomics and Radiogenomics in Neuro-oncology. RNO-AI 2019. Lecture Notes in Computer Science(), vol 11991. Springer, Cham. https://doi.org/10.1007/978-3-030-40124-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-40124-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40123-8
Online ISBN: 978-3-030-40124-5
eBook Packages: Computer ScienceComputer Science (R0)