Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Survey on Recent Advancements for AI Enabled Radiomics in Neuro-Oncology

  • Conference paper
  • First Online:
Radiomics and Radiogenomics in Neuro-oncology (RNO-AI 2019)

Abstract

Artificial intelligence (AI) enabled radiomics has evolved immensely especially in the field of oncology. Radiomics provide assistance in diagnosis of cancer, planning of treatment strategy, and prediction of survival. Radiomics in neuro-oncology has progressed significantly in the recent past. Deep learning has outperformed conventional machine learning methods in most image-based applications. Convolutional neural networks (CNNs) have seen some popularity in radiomics, since they do not require hand-crafted features and can automatically extract features during the learning process. In this regard, it is observed that CNN based radiomics could provide state-of-the-art results in neuro-oncology, similar to the recent success of such methods in a wide spectrum of medical image analysis applications. Herein we present a review of the most recent best practices and establish the future trends for AI enabled radiomics in neuro-oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Brain Tumor Association. http://abta.pub30.convio.net/about-us/news/brain-tumor-statistics/. Accessed 07 Jan 2019

  2. Cancer.net. https://www.cancer.net/cancer-types/brain-tumor/statistics. Accessed 07 Jan 2019

  3. UCSF health. https://www.ucsfhealth.org/conditions/brain_tumor/treatment.html. Accessed 07 Jan 2019

  4. Abbasi, S., Tajeripour, F.: Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 219, 526–535 (2017)

    Google Scholar 

  5. Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)

    Google Scholar 

  6. Alex, V., Safwan, M., Krishnamurthi, G.: Automatic segmentation and overall survival prediction in gliomas using fully convolutional neural network and texture analysis. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 216–225. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_19

    Chapter  Google Scholar 

  7. Altaf, T., Anwar, S.M., Gul, N., Majeed, M.N., Majid, M.: Multi-class alzheimer’s disease classification using image and clinical features. Biomed. Signal Process. Control 43, 64–74 (2018)

    Google Scholar 

  8. Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. J. Med. Syst. 42(11), 226 (2018)

    Google Scholar 

  9. Ateeq, T., et al.: Ensemble-classifiers-assisted detection of cerebral microbleeds in brain MRI. Comput. Electr. Eng. 69, 768–781 (2018)

    Google Scholar 

  10. Ayadi, W., Elhamzi, W., Charfi, I., Atri, M.: A hybrid feature extraction approach for brain MRI classification based on bag-of-words. Biomed. Signal Process. Control 48, 144–152 (2019)

    Google Scholar 

  11. Bagci, U., Yao, J., Miller-Jaster, K., Chen, X., Mollura, D.J.: Predicting future morphological changes of lesions from radiotracer uptake in 18F-FDG-PET images. PLoS ONE 8(2), e57105 (2013)

    Google Scholar 

  12. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Google Scholar 

  13. Buty, M., Xu, Z., Gao, M., Bagci, U., Wu, A., Mollura, D.J.: Characterization of lung nodule malignancy using hybrid shape and appearance features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 662–670. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_77

    Chapter  Google Scholar 

  14. Chang, K., et al.: Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging. Clin. Cancer Res. 24(5), 1073–1081 (2018)

    Google Scholar 

  15. Farooq, A., Anwar, S., Awais, M., Alnowami, M.: Artificial intelligence based smart diagnosis of alzheimer’s disease and mild cognitive impairment. In: 2017 International Smart cities conference (ISC2), pp. 1–4. IEEE (2017)

    Google Scholar 

  16. Fetit, A.E., et al.: Radiomics in paediatric neuro-oncology: a multicentre study on MRI texture analysis. NMR Biomed. 31(1), e3781 (2018)

    Google Scholar 

  17. Giacalone, M., et al.: Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke. Med. Image Anal. 50, 117–126 (2018)

    Google Scholar 

  18. Giardino, A., et al.: Role of imaging in the era of precision medicine. Acad. Radiol. 24(5), 639–649 (2017)

    Google Scholar 

  19. Gilanie, G., Bajwa, U.I., Waraich, M.M., Habib, Z., Ullah, H., Nasir, M.: Classification of normal and abnormal brain MRI slices using gabor texture and support vector machines. Signal Image Video Process. 12(3), 479–487 (2018)

    Google Scholar 

  20. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2015)

    Google Scholar 

  21. Gupta, N., Bhatele, P., Khanna, P.: Glioma detection on brain MRIs using texture and morphological features with ensemble learning. Biomed. Signal Process. Control 47, 115–125 (2019)

    Google Scholar 

  22. Haralick, R.M., Shanmugam, K., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Google Scholar 

  23. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Google Scholar 

  24. Hussain, S., Anwar, S.M., Majid, M.: Brain tumor segmentation using cascaded deep convolutional neural network. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1998–2001. IEEE (2017)

    Google Scholar 

  25. Hussain, S., Anwar, S.M., Majid, M.: Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261 (2018)

    Google Scholar 

  26. Jiang, Y., et al.: Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine 36, 171–182 (2018)

    Google Scholar 

  27. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Google Scholar 

  28. Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14

    Chapter  Google Scholar 

  29. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Google Scholar 

  30. Kotrotsou, A., Zinn, P.O., Colen, R.R.: Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn. Reson. Imaging Clin. 24(4), 719–729 (2016)

    Google Scholar 

  31. Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012)

    Google Scholar 

  32. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749 (2017)

    Google Scholar 

  33. Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7(1), 10353 (2017)

    Google Scholar 

  34. Liu, X., et al.: A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. NeuroImage: Clin. 20, 1070–1077 (2018)

    Google Scholar 

  35. Liu, Y., et al.: A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE 12(10), e0185844 (2017)

    MathSciNet  Google Scholar 

  36. Liu, Z., et al.: Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. NeuroImage: Clin. 19, 271–278 (2018)

    Google Scholar 

  37. Lohmann, P., et al.: Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NeuroImage: Clin. 20, 537–542 (2018)

    Google Scholar 

  38. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Google Scholar 

  39. Nabizadeh, N., Kubat, M.: Brain tumors detection and segmentation in MR images: gabor wavelet vs. statistical features. Comput. Electr. Eng. 45, 286–301 (2015)

    Google Scholar 

  40. Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recogn. 71, 158–172 (2017)

    Google Scholar 

  41. Nanni, L., Salvatore, C., Cerasa, A., Castiglioni, I., Initiative, A.D.N., et al.: Combining multiple approaches for the early diagnosis of alzheimer’s disease. Pattern Recogn. Lett. 84, 259–266 (2016)

    Google Scholar 

  42. Nie, D., et al.: Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci. Rep. 9(1), 1103 (2019)

    Google Scholar 

  43. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 7, 971–987 (2002)

    MATH  Google Scholar 

  44. Parmar, C., et al.: Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 9(7), e102107 (2014)

    Google Scholar 

  45. Polepaka, S., Rao, C.S., Mohan, M.C.: IDSS-based two stage classification of brain tumor using SVM. Health Technol., 1–10 (2019)

    Google Scholar 

  46. Qian, Z., et al.: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett. 451, 128–135 (2019)

    Google Scholar 

  47. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  48. Shen, C., et al.: Building CT radiomics based nomogram for preoperative esophageal cancer patients lymph node metastasis prediction. Transl. Oncol. 11(3), 815–824 (2018)

    Google Scholar 

  49. Singh, K.H.R.: A comparison of gray-level run length matrix and gray-level co-occurrence matrix towards cereal grain classification. Int. J. Comput. Eng. Technol. (IJCET) 7(6), 9–17 (2016)

    Google Scholar 

  50. Song, G., et al.: A noninvasive system for the automatic detection of gliomas based on hybrid features and PSO-KSVM. IEEE Access 7, 13842–13855 (2019)

    Google Scholar 

  51. Subramanyam, M., Goyal, J.: Translational biomarkers: from discovery and development to clinical practice. Drug Discov. Today: Technol. 21, 3–10 (2016)

    Google Scholar 

  52. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  53. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big data 3(1), 9 (2016)

    Google Scholar 

  54. Wong, K.C., Syeda-Mahmood, T., Moradi, M.: Building medical image classifiers with very limited data using segmentation networks. Med. Image Anal. 49, 105–116 (2018)

    Google Scholar 

  55. Wu, S., et al.: Development and validation of an MRI-based radiomics signature for the preoperative prediction of lymph node metastasis in bladder cancer. EBioMedicine 34, 76–84 (2018)

    Google Scholar 

  56. Yasaka, K., Akai, H., Kunimatsu, A., Kiryu, S., Abe, O.: Deep learning with convolutional neural network in radiology. Japan. J. Radiol. 36(4), 257–272 (2018)

    Google Scholar 

  57. Zhang, Z., et al.: A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur. Radiol. 28(6), 2255–2263 (2018)

    Google Scholar 

  58. Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y.: A deep learning model integrating FCNNS and CRFS for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Google Scholar 

  59. Zhou, H., et al.: Diagnosis of distant metastasis of lung cancer: based on clinical and radiomic features. Transl. Oncol. 11(1), 31–36 (2018)

    Google Scholar 

  60. Zhou, M., Chaudhury, B., Hall, L.O., Goldgof, D.B., Gillies, R.J., Gatenby, R.A.: Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J. Magn. Reson. Imaging 46(1), 115–123 (2017)

    Google Scholar 

  61. Zhou, M., et al.: Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. Am. J. Neuroradiol. 39(2), 208–216 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Muhammad Anwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anwar, S.M., Altaf, T., Rafique, K., RaviPrakash, H., Mohy-ud-Din, H., Bagci, U. (2020). A Survey on Recent Advancements for AI Enabled Radiomics in Neuro-Oncology. In: Mohy-ud-Din, H., Rathore, S. (eds) Radiomics and Radiogenomics in Neuro-oncology. RNO-AI 2019. Lecture Notes in Computer Science(), vol 11991. Springer, Cham. https://doi.org/10.1007/978-3-030-40124-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40124-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40123-8

  • Online ISBN: 978-3-030-40124-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics