Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12092))

Abstract

Location-based recommender systems (LBRS) suggest friends, events, and places considering information about geographical locations. These recommendations can be made to individuals but also to groups of users, which implies satisfying the group as a whole. In this work, we analyze different alternatives for POI group recommendations based on a multi-agent system consisting of negotiating agents that represent a group of users. The results obtained thus far indicate that our multi-agent approach outperforms traditional aggregation approaches, and that the usage of LBSN information helps to improve both the quality of the recommendations and the efficiency of the recommendation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.yelp.com/dataset/challenge.

  2. 2.

    http://mahout.apache.org/.

  3. 3.

    https://github.com/sschia/magres.

References

  1. Ayala-Gómez, F., Daróczy, B., Mathioudakis, M., Benczúr, A., Gionis, A.: Where could we go? Recommendations for groups in location-based social networks. In: Proceedings of the ACM on Web Science Conference (WebSci 2017), pp. 93–102 (2017)

    Google Scholar 

  2. Boratto, L., Carta, S., Fenu, G., Mulas, F., Pilloni, P.: Influence of rating prediction on group recommendation’s accuracy. IEEE Intell. Syst. 31(6), 22–27 (2016)

    Article  Google Scholar 

  3. Endriss, U.: Monotonic concession protocols for multilateral negotiation. In: Proceedings of the 5th International Joint Conference (AAMAS 2006), pp. 392–399 (2006)

    Google Scholar 

  4. Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M.: Group Recommender Systems. SECE. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75067-5

    Book  Google Scholar 

  5. Gottapu, R.D., Sriram Monangi, L.V.: Point-of-interest recommender system for social groups. Procedia Comput. Sci. 114(C), 159–164 (2017)

    Article  Google Scholar 

  6. Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM 2001), pp. 247–254 (2001)

    Google Scholar 

  7. Nguyen, T.N., Ricci, F.: Dynamic elicitation of user preferences in a chat-based group recommender system. In: Proceedings of the SAC 2017, pp. 1685–1692 (2017)

    Google Scholar 

  8. Purushotham, S., Kuo, C.-C.J., Shahabdeen, J., Nachman, L.: Collaborative group-activity recommendation in location-based social networks. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop (GeoCrowd 2014), pp. 8–15 (2014)

    Google Scholar 

  9. Ravi, L., Vairavasundaram, S.: A collaborative location based travel recommendation system through enhanced rating prediction for the group of users. Comput. Intell. Neurosci. 2016, 7 (2016)

    Google Scholar 

  10. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3

    Book  MATH  Google Scholar 

  11. Rios, C., Schiaffino, S., Godoy, D.: A study of neighbour selection strategies for POI recommendation in LBSNs. J. Inf. Sci. 44(6), 802–817 (2018)

    Article  Google Scholar 

  12. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation Among Computers. MIT Press, Cambridge (1994)

    Google Scholar 

  13. Rossi, S., Di Napoli, C., Barile, F., Liguori, L.: A multi-agent system for group decision support based on conflict resolution styles. In: Aydoğan, R., Baarslag, T., Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA 2016. LNCS (LNAI), vol. 10238, pp. 134–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57285-7_9

    Chapter  Google Scholar 

  14. Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M.: Evaluating group recommender systems. Group Recommender Systems. SECE, pp. 59–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75067-5_3

    Chapter  Google Scholar 

  15. Villavicencio, C., Schiaffino, S., Diaz-Pace, J.A., Monteserin, A., Demazeau, Y., Adam, C.: A MAS approach for group recommendation based on negotiation techniques. In: Demazeau, Y., Ito, T., Bajo, J., Escalona, M.J. (eds.) PAAMS 2016. LNCS (LNAI), vol. 9662, pp. 219–231. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39324-7_19

    Chapter  Google Scholar 

  16. Yuan, Z., Chen, C.: Research on group POls recommendation fusion of users’ gregariousness and activity in LBSN. In: Proceedings of the 2nd IEEE International Conference on Cloud Computing and Big Data Analysis, pp. 305–310 (2017)

    Google Scholar 

  17. Zeuthen, F.L.B.: Problems of Monopoly and Economic Warfare. Routledge, Abingdon (1930)

    Google Scholar 

  18. Zhu, Q., Wang, S., Cheng, B., Sun, Q., Yang, F., Chang, R.N.: Context-aware group recommendation for point-of-interests. IEEE Access 6, 12129–12144 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We thank CONICET PIP Project 112-201501-00030, ANPCyT project PICT 2016-2973, C. Ríos and C. Villavicencio for their support and their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Schiaffino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schiaffino, S., Godoy, D., Pace, J.A.D., Demazeau, Y. (2020). A MAS-Based Approach for POI Group Recommendation in LBSN. In: Demazeau, Y., Holvoet, T., Corchado, J., Costantini, S. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. PAAMS 2020. Lecture Notes in Computer Science(), vol 12092. Springer, Cham. https://doi.org/10.1007/978-3-030-49778-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49778-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49777-4

  • Online ISBN: 978-3-030-49778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics