Nothing Special   »   [go: up one dir, main page]

Skip to main content

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations

  • Conference paper
  • First Online:
Formal Techniques for Safety-Critical Systems (FTSCS 2019)

Abstract

In this article, we describe a static program analysis to determine the lowest floating-point precisions on inputs and intermediate results that guarantees a desired accuracy of the output values. A common practice used by developers without advanced training in computer arithmetic consists in using the highest precision available in hardware (double precision on most CPU’s) which can be exorbitant in terms of energy consumption, memory traffic, and bandwidth capacity. To overcome this difficulty, we propose a new precision tuning tool for the floating-point programs integrating a static forward and backward analysis, done by abstract interpretation. Next, our analysis will be expressed as a set of linear constraints easily checked by an SMT solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patriot missile defense: Software problem led to system failure at Dhahran, Saudi Arabia. Technical report GAO/IMTEC-92-26, General Accounting Office (1992)

    Google Scholar 

  2. Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Rakamarić, Z.: Rigorous floating-point mixed-precision tuning. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL). ACM (2017)

    Google Scholar 

  3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977, pp. 238–252 (1977)

    Google Scholar 

  4. Damouche, N., Martel, M.: Salsa: an automatic tool to improve the numerical accuracy of programs. In: Shankar, N., Dutertre, B. (eds.) Automated Formal Methods. Kalpa Publications in Computing, EasyChair (2018)

    Google Scholar 

  5. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014. ACM (2014)

    Google Scholar 

  6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  7. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)

    Article  Google Scholar 

  8. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration on relational domains. In: De Nicola, R. (ed.) Programming Languages and Systems. Springer, Heidelberg (2007)

    Google Scholar 

  9. Halfhill, T.R.: The truth behind the Pentium bug: how often do the five empty cells in the Pentium’s FPU lookup table spell miscalculation? (1995)

    Google Scholar 

  10. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., Legendre, M.P.: Automatically adapting programs for mixed-precision floating-point computation. In: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing, ICS 2013. ACM (2013)

    Google Scholar 

  11. Martel, M.: Floating-point format inference in mixed-precision. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 230–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_16

    Chapter  Google Scholar 

  12. Muller, J.M.: On the definition of ULP(x). Research Report RR-5504, LIP RR-2005-09, INRIA, LIP, February 2005. https://hal.inria.fr/inria-00070503

  13. Muller, J.M., et al.: Handbook of Floating-Point Arithmetic, 1st edn. Birkhäuser, Boston (2009)

    Google Scholar 

  14. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf, Raleigh (2013)

    Google Scholar 

  15. Rubio-González, C., et al.: Precimonious: tuning assistant for floating-point precision. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2013, Denver, CO, USA, 17–21 November 2013 (2013)

    Google Scholar 

  16. Rubio-González, C., et al.: Floating-point precision tuning using blame analysis. In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) (2016)

    Google Scholar 

  17. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9_33

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorra Ben Khalifa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben Khalifa, D., Martel, M., Adjé, A. (2020). POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations. In: Hasan, O., Mallet, F. (eds) Formal Techniques for Safety-Critical Systems. FTSCS 2019. Communications in Computer and Information Science, vol 1165. Springer, Cham. https://doi.org/10.1007/978-3-030-46902-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46902-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46901-6

  • Online ISBN: 978-3-030-46902-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics