Nothing Special   »   [go: up one dir, main page]

Skip to main content

Link Prediction via Higher-Order Motif Features

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Abstract

Link prediction requires predicting which new links are likely to appear in a graph. In this paper, we present an approach for link prediction that relies on higher-order analysis of the graph topology, well beyond the typical approach which relies on common neighbors. We treat the link prediction problem as a supervised classification problem, and we propose a set of features that depend on the patterns or motifs that a pair of nodes occurs in. By using motifs of sizes 3, 4, and 5, our approach captures a high level of detail about the graph topology. In addition, we propose two optimizations to construct the classification dataset from the graph. First, we propose adding negative examples to the graph as an alternative to the common approach of removing positive ones. Second, we show that it is important to control for the shortest-path distance when sampling pairs of nodes to form negative examples, since the difficulty of prediction varies with the distance. We experimentally demonstrate that using our proposed motif features in off-the-shelf classifiers results in up to 10% points increase in accuracy over prior topology-based and feature-learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://konect.uni-koblenz.de.

  2. 2.

    Code available at https://github.com/GhadeerAbuoda/LinkPrediction.

  3. 3.

    http://scikit-learn.org.

References

  1. Abuoda, G., De Francisci Morales, G., Aboulnaga, A.: Link prediction via higher-order motif features. arXiv preprint arXiv:1902.06679 (2019)

  2. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  3. Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.: Efficient graphlet counting for large networks. In: ICDM, pp. 1–10 (2015)

    Google Scholar 

  4. Aiello, L.M., Barrat, A., Schifanella, R., Cattuto, C., Markines, B., Menczer, F.: Friendship prediction and homophily in social media. TWEB 6(2), 9 (2012)

    Article  Google Scholar 

  5. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P., Jaakkola, T.: Mixed membership stochastic block models for relational data with application to protein-protein interactions. In: International Biometrics Society Annual Meeting, vol. 15 (2006)

    Google Scholar 

  6. Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: Workshop on Link Analysis, Counter-Terrorism and Security (2006)

    Google Scholar 

  7. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_9

    Chapter  Google Scholar 

  8. Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bressan, M., Chierichetti, F., Kumar, R., Leucci, S., Panconesi, A.: Counting graphlets: space vs. time. In: WSDM, pp. 557–566 (2017)

    Google Scholar 

  10. Chen, H., Li, X., Huang, Z.: Link prediction approach to collaborative filtering. In: JCDL, pp. 141–142 (2005)

    Google Scholar 

  11. Cukierski, W., Hamner, B., Yang, B.: Graph-based features for supervised link prediction. In: IJCNN (2011)

    Google Scholar 

  12. Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., Elovici, Y.: Link prediction in social networks using computationally efficient topological features. In: Proceedings of the International Conference on Privacy, Security, Risk and Trust (PASSAT) (2011)

    Google Scholar 

  13. Folino, F., Pizzuti, C.: Link prediction approaches for disease networks. In: Proceedings of the International Conference on Information Technology in Bio and Medical Informatics (2012)

    Google Scholar 

  14. Gao, F., Musial, K., Cooper, C., Tsoka, S.: Link prediction methods and their accuracy for different social networks and network metrics. Sci. Program. 2015, 1 (2015)

    Google Scholar 

  15. Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. Newsl. 7(2), 3–12 (2005)

    Article  Google Scholar 

  16. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD (2016)

    Google Scholar 

  17. Hulovatyy, Y., Solava, R.W., Milenković, T.: Revealing missing parts of the interactome via link prediction. PLOS ONE (2014)

    Google Scholar 

  18. Juszczyszyn, K., Kazienko, P., Musiał, K.: Local topology of social network based on motif analysis. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008. LNCS (LNAI), vol. 5178, pp. 97–105. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85565-1_13

    Chapter  MATH  Google Scholar 

  19. Juszczyszyn, K., Musial, K., Budka, M.: Link prediction based on subgraph evolution in dynamic social networks. In: SocialCom (2011)

    Google Scholar 

  20. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  Google Scholar 

  21. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  22. Lee, J.B., Rossi, R.A., Kong, X., Kim, S., Koh, E., Rao, A.: Higher-order graph convolutional networks. arXiv preprint arXiv:1809.07697 (2018)

  23. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: WWW (2010)

    Google Scholar 

  24. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  25. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: KDD, pp. 243–252 (2010)

    Google Scholar 

  26. Lu, L., Zhou, T.: Link prediction in complex networks: a survey. arXiv preprint arXiv:1010.0725 (2010)

  27. Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 437–452. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_28

    Chapter  Google Scholar 

  28. Milo, R., et al.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  Google Scholar 

  29. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  30. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    Article  Google Scholar 

  31. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814 (2005)

    Article  Google Scholar 

  32. Rahman, M., Hasan, M.A.: Link prediction in dynamic networks using graphlet. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 394–409. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_25

    Chapter  Google Scholar 

  33. Rossi, R.A., Ahmed, N.K., Koh, E.: Higher-order network representation learning. In: Companion Proceedings of the Web Conference (WWW), pp. 3–4 (2018)

    Google Scholar 

  34. Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S., Rao, A., Yadkori, Y.A.: HONE: higher-order network embeddings. arXiv preprint arXiv:1801.09303 (2018)

  35. Sa, H.R., Prudencio, R.B.: Supervised learning for link prediction in weighted networks. In: Proceedings International Workshop on Web and Text Intelligence (2010)

    Google Scholar 

  36. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  37. Schneider, D.S., Hudson, K.L., Lin, T.Y., Anderson, K.V.: Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev. 5(5), 797–807 (1991)

    Article  Google Scholar 

  38. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64 (2002)

    Article  Google Scholar 

  39. Soutoglou, E., Talianidis, I.: Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science 295(5561), 1901–1904 (2002)

    Article  Google Scholar 

  40. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  41. Teixeira, C.H., Fonseca, A.J., Serafini, M., Siganos, G., Zaki, M.J., Aboulnaga, A.: Arabesque: a system for distributed graph mining. In: SOSP, pp. 425–440 (2015)

    Google Scholar 

  42. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: VERSE: versatile graph embeddings from similarity measures. In: WWW (2018)

    Google Scholar 

  43. Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J.P., Oltvai, Z., Barabási, A.L.: The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc. Natl. Acad. Sci. 101(52), 17940–17945 (2004)

    Article  Google Scholar 

  44. Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods. Knowl. Inf. Syst. 45(3), 751–782 (2014). https://doi.org/10.1007/s10115-014-0789-0

    Article  Google Scholar 

  45. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: NeurIPS, pp. 5171–5181 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghadeer Abuoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abuoda, G., De Francisci Morales, G., Aboulnaga, A. (2020). Link Prediction via Higher-Order Motif Features. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics