Abstract
We introduce the integrality number of an integer program (IP) in inequality form. Roughly speaking, the integrality number is the smallest number of integer constraints needed to solve an IP via a mixed integer (MIP) relaxation. One notable property of this number is its invariance under unimodular transformations of the constraint matrix. Considering the largest minor \(\varDelta \) of the constraint matrix, our analysis allows us to make statements of the following form: there exist numbers \(\tau (\varDelta )\) and \(\kappa (\varDelta )\) such that an IP with \(n\ge \tau (\varDelta )\) many variables and \(n + \kappa (\varDelta )\cdot \sqrt{n}\) many inequality constraints can be solved via a MIP relaxation with fewer than n integer constraints. A special instance of our results shows that IPs defined by only n constraints can be solved via a MIP relaxation with \(O(\sqrt{\varDelta })\) many integer constraints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Artmann, S., Eisenbrand, F., Glanzer, C., Oertel, T., Vempala, S., Weismantel, R.: A note on non-degenerate integer programs with small sub-determinants. Oper. Res. Lett. 44(5), 635–639 (2016)
Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1206–1219 (2017)
Bader, J., Hildebrand, R., Weismantel, R., Zenklusen, R.: Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix. Math. Programm. 169(2), 565–584 (2017). https://doi.org/10.1007/s10107-017-1147-2
Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)
Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups. J. für die reine und angewandte Mathematik 510, 151–178 (2004)
Cook, W., Gerards, A., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Programm. 34, 251–264 (1986). https://doi.org/10.1007/BF01582230
Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-ellipsoid coverings. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 580–589 (2011)
Eisenbrand, F., Shmonin, G.: Parametric integer programming in fixed dimension. Math. Oper. Res. 33(4), 839–850 (2008). https://doi.org/10.1287/moor.1080.0320
Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 808–816 (2018)
Glanzer, C., Weismantel, R., Zenklusen, R.: On the number of distinct rows of a matrix with bounded subdeterminants. SIAM J. Discrete Math. 32, 1706–1720 (2018)
Gomory, R.E.: On the relation between integer and noninteger solutions to linear programs. Proc. Nat. Acad. Sci. 53(2), 260–265 (1965). https://doi.org/10.1073/pnas.53.2.260
Heller, I.: On linear systems with integral valued solutions. Pac. J. Math. 7, 1351–1364 (1957)
Hupp, L.M.: Integer and Mixed-Integer Reformulations of Stochastic Resource-Constrained, and Quadratic Matching Problems. Ph.D. thesis. Friedrich-Alexander-Universitat Erlangen-Nurnberg (2017)
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)
Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)
Oertel, T., Paat, J., Weismantel, R.: Sparsity of integer solutions in the average case. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 341–353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_26
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
Veselov, S., Chirkov, A.: Integer programming with bimodular matrix. Discrete Optim. 6, 220–222 (2009)
Wolsey, L.: The b-hull of an integer program. Discrete Appl. Math. 3(3), 193–201 (1981). https://doi.org/10.1016/0166-218X(81)90016-0. http://www.sciencedirect.com/science/article/pii/0166218X81900160
Acknowledgements
The authors wish to thank Helene Weiß and Stefan Weltge for their help that led to major improvements of the manuscript. We are also grateful to the anonymous referees for their comments that improved the presentation of the material. The third author acknowledges the support from the Einstein Foundation Berlin.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Proof
(of Lemma 2). Let \(W \in \mathbb {Z}^{k\times n}\) be a matrix with minimal k such that all vertices of \(W\!\text {-}\text {MIP}_{A,c}(b)\) are integral. Set \(\overline{A} := AU\), \(\overline{c} := c^\intercal U\), and \(\overline{W} := WU\). The matrix \(U^{-1}\) maps the vertices of \(W\!\text {-}\text {MIP}_{A,c}(b)\) to those of \(\overline{W}\!\text {-}\text {MIP}_{\overline{A}, \overline{c}}(b)\), and \(U^{-1}\) maps \(\mathbb {Z}^n\) to \(\mathbb {Z}^n\). Thus, \(\overline{W} \in \mathbb {Z}^{k\times n}\) and the vertices of \(\overline{W}\!\text {-}\text {MIP}_{\overline{A}, \overline{c}}(b)\) are integral. Hence, \(i_{A}(b) \ge i_{\overline{A}}(b)\). To see why the reverse inequality holds, it is enough to notice that \(U^{-1}\) is also unimodular. \(\square \)
Proof
(of Lemma 4). By Ghouila-Houri (see, e.g.,[17, §19]) it is enough to show
for a subset \(\widehat{W}\) of the rows of W. Recall that every column u of \(C = (B ~~ T ) W\) can be written as \(u = v+t\) for some \(v \in B\) and \(t \in T \cup \{0\}\). Hence, a column of W has at most two non-zero entries, where a non-zero entry equals 1. One of these entries is in the rows of \(W^B\) while the other is in \(W^T\). This shows \(y \in \{-1,0,1\}^n\). \(\square \)
Proof
(of Lemma 5). Let z be a column of \(A_I^1\). If \(z \in \{z^1, \dotsc , z^{\ell }\}\), then \(z = z+0 \in B+(T \cup \{0\})\). Else, \(z \in \{0,...,\alpha _1-1\} \times ... \times \{0,...,\alpha _\ell -1\}\). Define
We have \(v_i \in \{0,\ldots ,k_i\}\) for each \(i \in \{0,\ldots ,\ell \}\), so \(v := (v_0, \ldots , v_\ell )^\intercal \in B\). To see that \((t_1,\ldots ,t_\ell )^\intercal \in T\) note that \(t_i \le \beta _i\cdot (k_i+1)\) for each \(i \in \{1,\ldots , \ell \}\).
It is left to choose \(k_1, \dotsc , k_{\ell }\) such that \(|B|+|T| \le 6{\delta }^{1/2}+\log _2({\delta }) \). Note \(\ell \le \log _2({\delta })\) as \(\alpha _1, \dotsc , \alpha _{\ell } \ge 2\). By permuting rows and columns we assume \(\alpha _1 \le \alpha _2\le \ldots \le \alpha _{\ell }\). We consider two cases.
Case 1. Assume \(\alpha _\ell = {\delta }^\tau \) for \(\tau \ge 1/2\). This implies \(\prod _{i=1}^{\ell -1} \alpha _i = {\delta }^{1 - \tau } \le {\delta }^{1/2}\). Let \(\sigma \ge 0\) such that \(1-\tau + \sigma = 1/2\). For each \(i \in \{1, \dotsc , \ell -1\}\) define \(k_i := \alpha _i-1\) and set \(k_{\ell } := \lceil {\delta }^\sigma \rceil \). The value \(\beta _{\ell }\) in (9) satisfies
Define \(B = \overline{B} \cup \{z^1, \dotsc , z^{\ell }\}\), where \( \overline{B} := \{0, \dotsc , k_1\} \times \dotsc \times \{0, \dotsc , k_{\ell }\}, \) and the set T via (9). A direct computation reveals that \(|B| + |T| = |\overline{B}|+|T|+\ell \) is upper bounded by
Case 2. Assume \(\alpha _{\ell } < {\delta }^{1/2} \), which implies \({\delta }^{1/2} < \prod _{i=1}^{\ell -1} \alpha _i \). Let \(j \in \{1, \dotsc , \ell -2\}\) be the largest index with \(\gamma := \prod _{i = 1}^j \alpha _i \le {\delta }^{1/2}\). Let \(\sigma \ge 0\) be such that \(\gamma \cdot {\delta }^ \sigma = {\delta } ^ {1/2}\) and \(\tau < 1/2\) be such that \(\alpha _{j+1} = {\delta }^\tau \). Note that \(0 \le \sigma < \tau \) and \({\delta }^{\tau - \sigma } \cdot \prod _{i = j+2}^\ell \alpha _i = {\delta }^{1/2}\). For each \(i \in \{1, \dotsc , j\}\) define \(k_i := 0\), for each \(i \in \{j+2, \dotsc , \ell \}\) define \(k_i := \alpha _i - 1\), and set \(k_{j+1} := \lceil {\delta }^{\tau - \sigma } \rceil \). The value \(\beta _{j+1}\) in (9) satisfies
Define \(B = \overline{B} \cup \{z^1, \dotsc , z^{\ell }\}\), where \( \overline{B} := \{0, \dotsc , k_1\} \times \dotsc \times \{0, \dotsc , k_{\ell }\}, \) and the set T via (9). In this case we have \(|B| + |T| = |\overline{B}|+|T|+l \) is upper bounded by
\(\square \)
Proof
(of Lemma 7). Let \(x^* := A_I^{-1} b_I\) be the feasible vertex solution to \({\text {LP}}_{A,c}(b)\) with respect to the basis I. Applying Theorem 1 in [6] to the simplicial problems \({\text {LP}}_{A_I,c}(b)\) and \({\text {IP}}_{A_I,c}(b)\) shows that \(z^*\) satisfies \(\Vert z^* - x^*\Vert _{\infty } \le n\varDelta ^{\max }\). Thus, for every \(j \in \{1, \dotsc , m\}\setminus I\) we have
The assumption \(A_jA_I^{-1} b_I+ (n\varDelta ^{\max })^2 < b_j \) implies
Thus, \(z^*\) is feasible for \(W\!\text {-}\text {MIP}_{A,c}(b)\). \(\square \)
Proof
(of Lemma 8). Let \(b \in \mathbb {Z}^m \setminus \mathcal {G}\). Therefore, there exists a feasible \({\text {LP}}_{A,c}(b)\) basis \(I \subseteq \{1,\ldots ,m\}\) and \(j \in \{1,\ldots ,m\} \setminus I\) such that \(b_j \le A_jA_I^{-1} b_I + (n\varDelta ^{\max })^2\). Recall \(A_jA_I^{-1} b_I \le b_j\) because \(A_I^{-1} b_I\) is feasible for \({\text {LP}}_{A,c}(b)\). Thus, \(\mathbb {Z}^m\setminus \mathcal {G}\) is in
Cramer’s Rule implies that \(\varDelta _I \cdot A_jA_I^{-1} b_I \in \mathbb {Z}\) for all \(j \in \{1,\ldots ,m\} \setminus I\). Thus,
\(\square \)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Paat, J., Schlöter, M., Weismantel, R. (2020). The Integrality Number of an Integer Program. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-45771-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45770-9
Online ISBN: 978-3-030-45771-6
eBook Packages: Computer ScienceComputer Science (R0)