Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Integrality Number of an Integer Program

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12125))

Abstract

We introduce the integrality number of an integer program (IP) in inequality form. Roughly speaking, the integrality number is the smallest number of integer constraints needed to solve an IP via a mixed integer (MIP) relaxation. One notable property of this number is its invariance under unimodular transformations of the constraint matrix. Considering the largest minor \(\varDelta \) of the constraint matrix, our analysis allows us to make statements of the following form: there exist numbers \(\tau (\varDelta )\) and \(\kappa (\varDelta )\) such that an IP with \(n\ge \tau (\varDelta )\) many variables and \(n + \kappa (\varDelta )\cdot \sqrt{n}\) many inequality constraints can be solved via a MIP relaxation with fewer than n integer constraints. A special instance of our results shows that IPs defined by only n constraints can be solved via a MIP relaxation with \(O(\sqrt{\varDelta })\) many integer constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artmann, S., Eisenbrand, F., Glanzer, C., Oertel, T., Vempala, S., Weismantel, R.: A note on non-degenerate integer programs with small sub-determinants. Oper. Res. Lett. 44(5), 635–639 (2016)

    Article  MathSciNet  Google Scholar 

  2. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1206–1219 (2017)

    Google Scholar 

  3. Bader, J., Hildebrand, R., Weismantel, R., Zenklusen, R.: Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix. Math. Programm. 169(2), 565–584 (2017). https://doi.org/10.1007/s10107-017-1147-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  5. Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups. J. für die reine und angewandte Mathematik 510, 151–178 (2004)

    MATH  Google Scholar 

  6. Cook, W., Gerards, A., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Programm. 34, 251–264 (1986). https://doi.org/10.1007/BF01582230

    Article  MathSciNet  MATH  Google Scholar 

  7. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-ellipsoid coverings. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 580–589 (2011)

    Google Scholar 

  8. Eisenbrand, F., Shmonin, G.: Parametric integer programming in fixed dimension. Math. Oper. Res. 33(4), 839–850 (2008). https://doi.org/10.1287/moor.1080.0320

    Article  MathSciNet  MATH  Google Scholar 

  9. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 808–816 (2018)

    Google Scholar 

  10. Glanzer, C., Weismantel, R., Zenklusen, R.: On the number of distinct rows of a matrix with bounded subdeterminants. SIAM J. Discrete Math. 32, 1706–1720 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gomory, R.E.: On the relation between integer and noninteger solutions to linear programs. Proc. Nat. Acad. Sci. 53(2), 260–265 (1965). https://doi.org/10.1073/pnas.53.2.260

    Article  MathSciNet  MATH  Google Scholar 

  12. Heller, I.: On linear systems with integral valued solutions. Pac. J. Math. 7, 1351–1364 (1957)

    Article  MathSciNet  Google Scholar 

  13. Hupp, L.M.: Integer and Mixed-Integer Reformulations of Stochastic Resource-Constrained, and Quadratic Matching Problems. Ph.D. thesis. Friedrich-Alexander-Universitat Erlangen-Nurnberg (2017)

    Google Scholar 

  14. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  Google Scholar 

  15. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  16. Oertel, T., Paat, J., Weismantel, R.: Sparsity of integer solutions in the average case. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 341–353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_26

    Chapter  MATH  Google Scholar 

  17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  18. Veselov, S., Chirkov, A.: Integer programming with bimodular matrix. Discrete Optim. 6, 220–222 (2009)

    Article  MathSciNet  Google Scholar 

  19. Wolsey, L.: The b-hull of an integer program. Discrete Appl. Math. 3(3), 193–201 (1981). https://doi.org/10.1016/0166-218X(81)90016-0. http://www.sciencedirect.com/science/article/pii/0166218X81900160

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Helene Weiß and Stefan Weltge for their help that led to major improvements of the manuscript. We are also grateful to the anonymous referees for their comments that improved the presentation of the material. The third author acknowledges the support from the Einstein Foundation Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Schlöter .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof

(of Lemma 2). Let \(W \in \mathbb {Z}^{k\times n}\) be a matrix with minimal k such that all vertices of \(W\!\text {-}\text {MIP}_{A,c}(b)\) are integral. Set \(\overline{A} := AU\), \(\overline{c} := c^\intercal U\), and \(\overline{W} := WU\). The matrix \(U^{-1}\) maps the vertices of \(W\!\text {-}\text {MIP}_{A,c}(b)\) to those of \(\overline{W}\!\text {-}\text {MIP}_{\overline{A}, \overline{c}}(b)\), and \(U^{-1}\) maps \(\mathbb {Z}^n\) to \(\mathbb {Z}^n\). Thus, \(\overline{W} \in \mathbb {Z}^{k\times n}\) and the vertices of \(\overline{W}\!\text {-}\text {MIP}_{\overline{A}, \overline{c}}(b)\) are integral. Hence, \(i_{A}(b) \ge i_{\overline{A}}(b)\). To see why the reverse inequality holds, it is enough to notice that \(U^{-1}\) is also unimodular.    \(\square \)

Proof

(of Lemma 4). By Ghouila-Houri (see, e.g.,[17, §19]) it is enough to show

$$\begin{aligned} \textstyle y := \sum _{w \in \widehat{W} \cap {W}^B} -w ~ + \sum _{w \in \widehat{W} \cap {W}^T} w \in \{-1,0,1\}^{n} \end{aligned}$$

for a subset \(\widehat{W}\) of the rows of W. Recall that every column u of \(C = (B ~~ T ) W\) can be written as \(u = v+t\) for some \(v \in B\) and \(t \in T \cup \{0\}\). Hence, a column of W has at most two non-zero entries, where a non-zero entry equals 1. One of these entries is in the rows of \(W^B\) while the other is in \(W^T\). This shows \(y \in \{-1,0,1\}^n\).    \(\square \)

Proof

(of Lemma 5). Let z be a column of \(A_I^1\). If \(z \in \{z^1, \dotsc , z^{\ell }\}\), then \(z = z+0 \in B+(T \cup \{0\})\). Else, \(z \in \{0,...,\alpha _1-1\} \times ... \times \{0,...,\alpha _\ell -1\}\). Define

$$\begin{aligned} t_i = \bigg \lfloor \frac{z_i}{k_i+1} \bigg \rfloor \cdot (k_i+1) \text { and } v_i = z_i -t_i \text { for all } i \in \{0,\ldots ,\ell \}. \end{aligned}$$

We have \(v_i \in \{0,\ldots ,k_i\}\) for each \(i \in \{0,\ldots ,\ell \}\), so \(v := (v_0, \ldots , v_\ell )^\intercal \in B\). To see that \((t_1,\ldots ,t_\ell )^\intercal \in T\) note that \(t_i \le \beta _i\cdot (k_i+1)\) for each \(i \in \{1,\ldots , \ell \}\).

It is left to choose \(k_1, \dotsc , k_{\ell }\) such that \(|B|+|T| \le 6{\delta }^{1/2}+\log _2({\delta }) \). Note \(\ell \le \log _2({\delta })\) as \(\alpha _1, \dotsc , \alpha _{\ell } \ge 2\). By permuting rows and columns we assume \(\alpha _1 \le \alpha _2\le \ldots \le \alpha _{\ell }\). We consider two cases.

Case 1. Assume \(\alpha _\ell = {\delta }^\tau \) for \(\tau \ge 1/2\). This implies \(\prod _{i=1}^{\ell -1} \alpha _i = {\delta }^{1 - \tau } \le {\delta }^{1/2}\). Let \(\sigma \ge 0\) such that \(1-\tau + \sigma = 1/2\). For each \(i \in \{1, \dotsc , \ell -1\}\) define \(k_i := \alpha _i-1\) and set \(k_{\ell } := \lceil {\delta }^\sigma \rceil \). The value \(\beta _{\ell }\) in (9) satisfies

$$ \beta _{\ell } = \bigg \lfloor \frac{\alpha _{\ell }-1}{\big \lceil {\delta }^\sigma \big \rceil +1} \bigg \rfloor = \bigg \lfloor \frac{{\delta }^\tau -1}{\big \lceil {\delta }^\sigma \big \rceil +1} \bigg \rfloor \le \big \lceil {\delta }^{1/2}\big \rceil \le {\delta }^{1/2} + 1. $$

Define \(B = \overline{B} \cup \{z^1, \dotsc , z^{\ell }\}\), where \( \overline{B} := \{0, \dotsc , k_1\} \times \dotsc \times \{0, \dotsc , k_{\ell }\}, \) and the set T via (9). A direct computation reveals that \(|B| + |T| = |\overline{B}|+|T|+\ell \) is upper bounded by

$$ {\delta }^{1-\tau }(\lceil {\delta }^\sigma \rceil +1) + (\beta _\ell +1) + \log _2({\delta }) \le 6{\delta }^{1/2}+ \log _2({\delta }). $$

Case 2. Assume \(\alpha _{\ell } < {\delta }^{1/2} \), which implies \({\delta }^{1/2} < \prod _{i=1}^{\ell -1} \alpha _i \). Let \(j \in \{1, \dotsc , \ell -2\}\) be the largest index with \(\gamma := \prod _{i = 1}^j \alpha _i \le {\delta }^{1/2}\). Let \(\sigma \ge 0\) be such that \(\gamma \cdot {\delta }^ \sigma = {\delta } ^ {1/2}\) and \(\tau < 1/2\) be such that \(\alpha _{j+1} = {\delta }^\tau \). Note that \(0 \le \sigma < \tau \) and \({\delta }^{\tau - \sigma } \cdot \prod _{i = j+2}^\ell \alpha _i = {\delta }^{1/2}\). For each \(i \in \{1, \dotsc , j\}\) define \(k_i := 0\), for each \(i \in \{j+2, \dotsc , \ell \}\) define \(k_i := \alpha _i - 1\), and set \(k_{j+1} := \lceil {\delta }^{\tau - \sigma } \rceil \). The value \(\beta _{j+1}\) in (9) satisfies

$$ \beta _{j+1} = \bigg \lfloor \frac{\alpha _{j+1}-1}{\big \lceil {\delta }^{\tau - \sigma } \big \rceil +1} \bigg \rfloor = \bigg \lfloor \frac{{\delta }^\tau -1}{\big \lceil {\delta }^{\tau - \sigma } \big \rceil +1} \bigg \rfloor \le \big \lceil {\delta }^{\sigma }\big \rceil . $$

Define \(B = \overline{B} \cup \{z^1, \dotsc , z^{\ell }\}\), where \( \overline{B} := \{0, \dotsc , k_1\} \times \dotsc \times \{0, \dotsc , k_{\ell }\}, \) and the set T via (9). In this case we have \(|B| + |T| = |\overline{B}|+|T|+l \) is upper bounded by

$$ \textstyle \left( \prod _{i = j+2}^\ell \alpha _i\right) ({\delta }^{\tau - \sigma } +2 ) + \gamma ({\delta }^\sigma +2) + \log _2({\delta }) \le 6{\delta }^{1/2}+ \log _2({\delta }). $$

   \(\square \)

Proof

(of Lemma 7). Let \(x^* := A_I^{-1} b_I\) be the feasible vertex solution to \({\text {LP}}_{A,c}(b)\) with respect to the basis I. Applying Theorem 1 in [6] to the simplicial problems \({\text {LP}}_{A_I,c}(b)\) and \({\text {IP}}_{A_I,c}(b)\) shows that \(z^*\) satisfies \(\Vert z^* - x^*\Vert _{\infty } \le n\varDelta ^{\max }\). Thus, for every \(j \in \{1, \dotsc , m\}\setminus I\) we have

$$ |A_j z^*-A_jx^*| \le \Vert A_j\Vert _1 \cdot \Vert z^* - x^*\Vert _\infty \le n^2\Vert A_j\Vert _\infty \cdot \varDelta ^{\max } \le (n\varDelta ^{\max })^2. $$

The assumption \(A_jA_I^{-1} b_I+ (n\varDelta ^{\max })^2 < b_j \) implies

$$\begin{aligned} A_j z^*\le A_jx^* +|A_jz^*-A_jx^*| \le A_jx^* + (n\varDelta ^{\max })^2 = A_jA_I^{-1} b_I + (n\varDelta ^{\max })^2 < b_j. \end{aligned}$$

Thus, \(z^*\) is feasible for \(W\!\text {-}\text {MIP}_{A,c}(b)\).    \(\square \)

Proof

(of Lemma 8). Let \(b \in \mathbb {Z}^m \setminus \mathcal {G}\). Therefore, there exists a feasible \({\text {LP}}_{A,c}(b)\) basis \(I \subseteq \{1,\ldots ,m\}\) and \(j \in \{1,\ldots ,m\} \setminus I\) such that \(b_j \le A_jA_I^{-1} b_I + (n\varDelta ^{\max })^2\). Recall \(A_jA_I^{-1} b_I \le b_j\) because \(A_I^{-1} b_I\) is feasible for \({\text {LP}}_{A,c}(b)\). Thus, \(\mathbb {Z}^m\setminus \mathcal {G}\) is in

$$\begin{aligned} \{b \in \mathbb {Z}^m:~\exists \text { a basis } I \text { and } j \in \{1,\ldots ,m\}\setminus I \text { with } b_j \le A_jA_I^{-1} b_I + (n\varDelta ^{\max })^2\}. \end{aligned}$$

Cramer’s Rule implies that \(\varDelta _I \cdot A_jA_I^{-1} b_I \in \mathbb {Z}\) for all \(j \in \{1,\ldots ,m\} \setminus I\). Thus,

$$\begin{aligned}&\{b\in \mathbb {Z}^m: \exists \text { a basis } I \text { and } j \not \in I \text { with } \varDelta _Ib_j \le \varDelta _IA_jA_I^{-1} b_I + \varDelta _I(n\varDelta ^{\max })^2\} \\ \subseteq&\bigcup _{\begin{array}{c} I \subseteq \{1,\ldots ,m\} \\ I \text { basis} \end{array}} \bigcup _{j \not \in I} \bigcup _{r = 0}^{\varDelta _I(n\varDelta ^{\max })^2}\{b \in \mathbb {Z}^m : \varDelta _I b_j = \varDelta _IA_jA_I^{-1} b_I + r\}. \end{aligned}$$

   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paat, J., Schlöter, M., Weismantel, R. (2020). The Integrality Number of an Integer Program. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45771-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45770-9

  • Online ISBN: 978-3-030-45771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics