Nothing Special   »   [go: up one dir, main page]

Skip to main content

Profiling Environmental Conditions from DNA

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12108))

Abstract

DNA is quintessential to carry out basic functions by organisms as it encodes information necessary for metabolomics and proteomics, among others. In particular, it is common nowadays to use DNA for profiling living organisms based on their phenotypic traits. These traits are the outcomes of the genetic makeup constrained by the interaction between living organisms and their surrounding environment over time. For environmental conditions, however, the conventional assumption is that they are too random and ephemeral to be encoded in the DNA of an organism. Here, we demonstrate that, to the contrary, genomic DNA may also encode sufficient information about some environmental features of an organism’s habitat for a machine learning model to reveal them, although there seem to be exceptions, i.e. some environmental features do not appear to be coded in DNA, unless our methods miss that information. Nevertheless, we demonstrate that these features can be used to train better models for better predictions of other environmental factors. These results lead directly to the question of whether over evolutionary history, DNA itself is actually also a repository of information related to the environment where the lineage has developed, perhaps even more cryptically than the way it encodes phenotypic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5), 1021–1024 (1994)

    Article  CAS  Google Scholar 

  2. Barberán, A., Ramirez, K.S., Leff, J.W., Bradford, M.A., Wall, D.H., Fierer, N.: Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soul bacteria. Ecol. Lett. 17(7), 794–802 (2014)

    Article  Google Scholar 

  3. Candel, A., Parmar, V., LeDell, E., Arora, A.: Deep learning with H2O. H2O. ai Inc (2016)

    Google Scholar 

  4. Chuine, I.: Why does phenology drive species distribution? Philos. Trans. R. Soc. B Biol. Sci. 365(1555), 3149–3160 (2010)

    Article  Google Scholar 

  5. Colorado-Garzón, F.A., Adler, P.H., García, L.F., Muñoz de Hoyos, P., Bueno, M.L., Matta, N.E.: Estimating diversity of black flies in the Simulium ignescens and Simulium tunja complexes in Colombia: chromosomal rearrangements as the core of integrative taxonomy. J. Hered. 108(1), 12–24 (2017)

    Article  Google Scholar 

  6. Cook-Deegan, R., DeRienzo, C., Carbone, J., Chandrasekharan, S., Heaney, C., Conover, C.: Impact of gene patents and licensing practices on access to genetic testing for inherited susceptibility to cancer: comparing breast and ovarian cancers with colon cancers. Genet. Med. 12, S15–S38 (2010)

    Article  Google Scholar 

  7. Darlington, P.J.: The cost of evolution and the imprecision of adaptation. Proc. Natl. Acad. Sci. 74(4), 1647–1651 (1977)

    Article  Google Scholar 

  8. Elith, J., Leathwick, J.R.: Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009)

    Article  Google Scholar 

  9. Garzon, M.H., Bobba, K.C.: A geometric approach to gibbs energy landscapes and optimal DNA codeword design. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 73–85. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32208-2_6

    Chapter  Google Scholar 

  10. Garzon, M.H., Mainali, S.: Towards reliable microarray analysis and design. In: The 9th International Conference on Bioinformatics and Computational Biology, ISCA (2017)

    Google Scholar 

  11. Garzon, M.H., Mainali, S.: Towards a universal genomic positioning system: phylogenetics and species IDentification. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2017. LNCS, vol. 10209, pp. 469–479. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56154-7_42

    Chapter  Google Scholar 

  12. Garzon, M.H., Pham, D.T.: Genomic solutions to hospital-acquired bacterial infection identification. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10813, pp. 486–497. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78723-7_42

    Chapter  Google Scholar 

  13. Garzon, M.H., Wong, T.Y.: DNA chips for species identification and biological phylogenies. Nat. Comput. 10, 375–389 (2011)

    Article  CAS  Google Scholar 

  14. Garzon, M., Neathery, P., Deaton, R., Murphy, R.C., Franceschetti, D.R., Stevens Jr., S.E.: A new metric for DNA computing. In: Proceedings of the 2nd Genetic Programming Conference, pp. 472–478. Morgan-Kaufmann (1997)

    Google Scholar 

  15. Guisan, A., et al.: Predicting species distributions for conservation decisions. Ecol. Lett. 16(12), 1424–1435 (2013)

    Article  Google Scholar 

  16. Haykin, S.: Neural Networks and Learning Machines. Prenctice-Hall, New Jersey (2018)

    Google Scholar 

  17. Hoegh-Guldberg, O., et al.: Assisted colonization and rapid climate change. Science 321, 345–346 (2008)

    Article  CAS  Google Scholar 

  18. Li, X., Qian, B., Wei, J., Zhang, X., Chen, S., Zheng, Q.: Domain knowledge guided deep atrial fibrillation classification and its visual interpretation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 129–138. ACM (2019)

    Google Scholar 

  19. Mainali, S., Colorado, F.A., Garzon, M.H.: Foretelling the phenotype of a genomic sequence. In: IEEE Transactions on Computational Biology and Bioinformatics, revision under review (2020)

    Google Scholar 

  20. Marcus, G.: Innateness, alphazero, and artificial intelligence. arXiv preprint arXiv:1801.05667 (2018)

  21. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition. BSPHS, vol. 42. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-009-8947-4

    Book  Google Scholar 

  22. Radovanović, S., Delibašić, B., Jovanović, M., Vukićević, M., Suknović, M.: Framework for integration of domain knowledge into logistic regression. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, p. 24. ACM (2018)

    Google Scholar 

  23. Ricklefs, R.: Phyletic gradualism vs. punctuated equilibrium: applicability of neontological data. Paleobiology 6(3), 271–275 (1980). https://doi.org/10.1017/s0094837300006795

    Article  Google Scholar 

  24. Seeman, N.C.: Nucleic acid junctions and lattices. J. Theor. Biol. 99(2), 237–247 (1982)

    Article  CAS  Google Scholar 

  25. Seeman, N.C.: DNA in a material world. Nature 421(6921), 427 (2003)

    Article  Google Scholar 

  26. Sober, E.: What is wrong with intelligent design? Q. Rev. Biol. 82(1), 3–8 (2007)

    Article  Google Scholar 

  27. Vasseur, F., et al.: Adaptive diversification of growth allometry in the plant Arabidopsis thaliana. PNAS 115:13 3416-3421 (2018)

    Google Scholar 

  28. Wang, J.X., Wu, J.L., Xiao, H.: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2(3), 034603 (2017)

    Article  Google Scholar 

  29. Watson, J.D., Crick, F.: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)

    Article  CAS  Google Scholar 

  30. Weigel, D., Mott, R.: The 1001 genomes project for Arabidopsis thaliana. Genome Biol. 10(5), 107 (2009)

    Article  Google Scholar 

  31. Yin, C., Zhao, R., Qian, B., Lv, X., Zhang, P.: Domain Knowledge guided deep learning with electronic health records. In: IEEE International Conference on Data Mining (ICDM) (2019)

    Google Scholar 

Download references

Acknowledgement

We would like to thank the labs of professors Nubia Matta and Fernando Garcia at the National University for their work in collecting some of the sample data for blackfly used in this paper. The use of the High Performance Computing Center (HPC) at the U of Memphis is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sambriddhi Mainali or Max H. Garzon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mainali, S., Garzon, M.H., Colorado, F.A. (2020). Profiling Environmental Conditions from DNA. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics