Nothing Special   »   [go: up one dir, main page]

Skip to main content

Micro-Variations from RNA-seq Experiments for Non-model Organisms

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Abstract

RNA-based high-throughput sequencing technologies provide a huge amount of reads from transcripts. In addition to expression analyses, transcriptome reconstruction, or isoform detection, they could be useful for detection of gene variations, in particular micro-variations (single nucleotide polymorphisms [SNPs] and indels). Gene variations are usually based on homogenous (one single individual) DNA-seq data, but this study aims the usage of heterogeneous (several individuals) RNA-seq data to obtain clues about gene variability of a population. Therefore, new algorithms or workflows are required to fill this gap, usually disregarded. Here it is presented an automated workflow based on existing software to predict micro-variations from RNA-seq data using a genome or a transcriptome as reference. It can deal with organism whose genome sequence is known and well-annotated, as well as non-model organism where only draft genomes or transcriptomes are available. Mapping is based on STAR in both cases. Micro-variation detection relies on GATK (combining Mutect2 and HaplotypeCaller) and VarScan since they are able to provide reliable results from RNA-seq reads. The workflow has been tested with reads from normal and diseased lung from patients having small-cell lung carcinoma. Human genome, as well as human transcriptome, were used as reference and then compared: from the initial 120 000 micro-variations, only 267 were predicted by at least two algorithm in the exome of patients. The workflow was tested in non-model organisms such as Senegalese sole, using its transcriptome as reference, to determine micro-variations in sole larvae exposed to different salinities. Therefore, the workflow seems to produce robust and reliable micro-variations in coding genes based on RNA-seq, irrespective of the nature of the reference sequence. We think that this paves the way to correlate micro-variations and differentially expressed genes in non-model organisms with the aim of foster breeding plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. APROMAR: Asociación Empresarial de Acuicultura de España: La Acuicultura en España 2018. Technical report, Ministerio de Agricultura y Pesca, Alimentación y Medioambiente (2018)

    Google Scholar 

  2. Arroyo, M., Bautista, R., Larrosa, R., Cobo, M.Á., Claros, M.G.: Biomarker potential of repetitive-element transcriptome in lung cancer. PeerJ 7, e8277 (2019)

    Article  Google Scholar 

  3. Benjamin, D., Sato, T., Cibulskis, K., Getz, G., Stewart, C., Lichtenstein, L.: Calling somatic snvs and indels with mutect2. BioRxiv (2019). https://doi.org/10.1101/861054

    Article  Google Scholar 

  4. Benzekri, H., et al.: De novo assembly, characterization and functional annotation of Senegalese sole (Solea senegalensis) and common sole (Solea solea) transcriptomes: integration in a database and design of a microarray. BMC Genomics 15, 952 (2014)

    Article  Google Scholar 

  5. Brouard, J.S., Schenkel, F., Marete, A., Bissonnette, N.: The GATK joint genotyping workflow is appropriate for calling variants in RNA-seq experiments. J. Anim. Sci. Biotechnol. 10, 44 (2019)

    Article  Google Scholar 

  6. Córdoba-Caballero, J., Seoane-Zonjic, P., Manchado, M., Gonzalo Claros, M.: De novo Transcriptome Assembly of Solea senegalensis v5.0 Using TransFlow. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds.) IWBBIO 2019. LNCS, vol. 11465, pp. 48–59. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17938-0_5

    Chapter  Google Scholar 

  7. DePristo, M.A., et al.: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5), 491–8 (2011)

    Article  CAS  Google Scholar 

  8. Dobin, A., et al.: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013)

    Article  CAS  Google Scholar 

  9. Falgueras, J., Lara, A.J., Fernández-Pozo, N., Cantón, F.R., Pérez-Trabado, G., Claros, M.G.: SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinf. 11, 38 (2010)

    Article  Google Scholar 

  10. González Gayte, I., Bautista Moreno, R., Seoane Zonjic, P., Claros, M.G.: DEgenes Hunter - A Flexible R Pipeline for Automated RNA-seq Studies in Organisms without Reference Genome. Genomics Comput. Biol. 3(3), e31 (2017)

    Article  Google Scholar 

  11. Koboldt, D.C., et al.: Varscan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22(3), 568–76 (2012)

    Article  CAS  Google Scholar 

  12. Manchado, M., Planas, J.V., Cousin, X., Rebordinos, L., Claros, M.G.: Genetic and genomic characterization of soles. In: Muñoz-Cueto, J.A., Mañanós-Sánchez, E.L., Sánchez-Vázquez, F.J. (eds.) The Biology of Sole. Number B6.1, pp. 361–379. CRC Press (2019)

    Google Scholar 

  13. McLaren, W., et al.: The ensembl variant effect predictor. Genome Biol. 17(1), 122 (2016)

    Article  Google Scholar 

  14. Mi, H., Muruganujan, A., Thomas, P.D.: Panther in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 41((Database issue)), D377–D386 (2013)

    CAS  PubMed  Google Scholar 

  15. Rudin, C.M., et al.: Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Gen. 44(10), 1111–1116 (2012)

    Article  CAS  Google Scholar 

  16. Stein, S., Bahrami-Samani, E., Xing, Y.: Using RNA-Seq to Discover genetic polymorphisms that produce hidden splice variants. Methods Mol. Biol. 1648, 129–142 (2017)

    Article  CAS  Google Scholar 

  17. Wang, W., et al.: Genetic structure of six cattle populations revealed by transcriptome-wide SNPs and gene expression. Genes Genomics 40(7), 715–724 (2018)

    Article  CAS  Google Scholar 

  18. Yang, H., Wang, K.: Genomic variant annotation and prioritization with annovar and wannovar. Nat. Protoc. 10(10), 1556–66 (2015). https://doi.org/10.1007/s13258-018-0677-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan, Y., et al.: Genome-wide association and differential expression analysis of salt tolerance in gossypium hirsutum l at the germination stage. BMC Plant Biol. 19(1), 394 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the NeumoSur grants 12/2015 and 14/2016 as well as projects RTA2017-00054-C03-03, AGL2017-83370-C3-3-R and TIN2017-88728-C2-1-R co-funded by MCIU/AEI/FEDER (Spanish Ministerio de Ciencia, Innovación y Universidad, Spanish Agencia Estatal de Investigación, and European Regional Development Fund 2014–2020). The authors also thankfully acknowledge the computer resources and the technical support provided by the Andalusian Platform for Bioinformatics of the University of Malaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gonzalo Claros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Espinosa, E., Arroyo, M., Larrosa, R., Manchado, M., Claros, M.G., Bautista, R. (2020). Micro-Variations from RNA-seq Experiments for Non-model Organisms. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics