Nothing Special   »   [go: up one dir, main page]

Skip to main content

Window Functions in Rhythm Based Biometric Authentication

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12108))

  • 1719 Accesses

Abstract

Emerging new technologies and new threads entail additional security; therefore, biometric authentication is the key to protecting the passwords by classifying unique biometric features. One of the protocols recently proposed is the rhythm-based authentication dealing with the dominant frequency components of the keystroke signals. However, frequency component itself is not enough to understand the whole keystroke sequence; therefore, the characteristic of a password could only be analyzed by transformations providing the information of when which dominant frequency arises. In this paper, the biometric signal generated from keystroke data is divided into windows by various window functions and sizes for frequency and time localization. As a guide for signal processing in biometrics and biomedicine, we compared Hamming and Blackman widow functions with various sizes in short time Fourier transformations of the signals and found out that Blackman is more appropriate for biometric signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sarier, N.D.: Multimodal biometric identity based encryption. Future Gener. Comput. Syst. 80, 112–125 (2017)

    Article  Google Scholar 

  2. Kroeze, C.J., Malan, K.M.: User authentication based on continuous touch biometrics. S. Afr. Comput. J. 28(2), 1–23 (2016)

    Google Scholar 

  3. Mondal, S., Bours, P.: A study on continuous authentication using a combination of keystroke and mouse biometrics. Neurocomputing 230, 1–22 (2017)

    Article  Google Scholar 

  4. Alshanketi, F., Traore, I., Ahmed, A.A.: Improving performance and usability in mobile keystroke dynamic biometric authentication. In: Security and Privacy Workshops (SPW). IEEE (2016)

    Google Scholar 

  5. Alsultan, A., Warwick, K., Wei, H.: Non-conventional keystroke dynamics for user authentication. Pattern Recogn. Lett. 89, 53–59 (2017)

    Article  Google Scholar 

  6. Alpar, O.: Intelligent biometric pattern password authentication systems for touchscreens. Expert Syst. Appl. 42(17), 6286–6294 (2015)

    Article  Google Scholar 

  7. Alpar, O.: Keystroke recognition in user authentication using ANN based RGB histogram technique. Eng. Appl. Artif. Intell. 32, 213–217 (2014)

    Article  Google Scholar 

  8. Alpar, O., Krejcar, O.: Biometric swiping on touchscreens. In: Computer Information Systems and Industrial Management (2015)

    Google Scholar 

  9. Alpar, O., Krejcar, O.: Pattern password authentication based on touching location. In: Intelligent Data Engineering and Automated Learning–IDEAL 2015 (2015)

    Google Scholar 

  10. Alpar, O.: Biometric touchstroke authentication by fuzzy proximity of touch locations. Future Gener. Comput. Syst. 86, 71–80 (2018)

    Article  Google Scholar 

  11. Alpar, O., Krejcar, O.: Biometric keystroke signal preprocessing Part I: signalization, digitization and alteration. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10350, pp. 267–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60042-0_31

    Chapter  Google Scholar 

  12. Alpar, O., Krejcar, O.: Biometric keystroke signal preprocessing Part II: manipulation. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10350, pp. 289–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60042-0_34

    Chapter  Google Scholar 

  13. Alpar, O.: Frequency spectrograms for biometric keystroke authentication using neural network based classifier. Knowl.-Based Syst. 116, 163–171 (2017)

    Article  Google Scholar 

  14. Alpar, O., Krejcar, O.: Hidden frequency feature in electronic signatures. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.) IEA/AIE 2016. LNCS (LNAI), vol. 9799, pp. 145–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42007-3_13

    Chapter  Google Scholar 

  15. Alpar, O., Krejcar, O.: Online signature verification by spectrogram analysis. Appl. Intell. (2017). https://doi.org/10.1007/s10489-017-1009-x

  16. Alpar, O., Krejcar, O.: Frequency and time localization in biometrics: STFT vs. CWT. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds.) IEA/AIE 2018. LNCS (LNAI), vol. 10868, pp. 722–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92058-0_69

    Chapter  Google Scholar 

  17. Hwang, S.S., Lee, H.J., Cho, S.: Improving authentication accuracy using artificial rhythms and cues for keystroke dynamics-based authentication. Expert Syst. Appl. 36(7), 10649–10656 (2009)

    Article  Google Scholar 

  18. Alpar, O.: TAPSTROKE: a novel intelligent authentication system using tap frequencies. Expert Syst. Appl. 136, 426–438 (2019)

    Article  Google Scholar 

  19. Roh, J.H., Lee, S.H., Kim, S.: Keystroke dynamics for authentication in smartphone. In: International Conference on Information and Communication Technology Convergence (ICTC). IEEE (2016)

    Google Scholar 

  20. Sae-Bae, N., Ahmed, K., Isbister, K., Memon, N.: Biometric-rich gestures: a novel approach to authentication on multi-touch devices. In: CHI 2012 Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, New York (2012)

    Google Scholar 

  21. Chang, T.Y., Tsai, C.J., Lin, J.H.: A graphical-based password keystroke dynamic authentication system for touch screen handheld mobile devices. J. Syst. Softw. 85(5), 1157–1165 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic. We are also grateful for the support of Ph.D. students of our team (Ayca Kirimtat and Sebastien Mambou) in consultations regarding application aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alpar, O., Krejcar, O. (2020). Window Functions in Rhythm Based Biometric Authentication. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics