Abstract
Numerous illegal and dangerous activities take place at sea, including violations of ship emission rules, illegal fishing, illegal discharges of oil and garbage, smuggling, piracy and more. We present our efforts to combine two stream reasoning technologies for detecting such activities in real time: a formal, computational framework for composite maritime event recognition, based on the Event Calculus, and an industry-strong maritime anomaly detection service, capable of processing daily real-world data volumes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Artikis, A., Sergot, M.J., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015)
Chatzikokolakis, K., Zissis, D., Vodas, M., Spiliopoulos, G., Kontopoulos, I.: A distributed lightning fast maritime anomaly detection service. In: OCEANS 2019 - Marseille, June 2019, pp. 1–8 (2019)
Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 293–322. Plenum Press, New York (1978)
FAO. VMS for fishery vessels. http://www.fao.org/fishery/topic/18103/en. Accessed 15 May 2019
Greidanus, H., Alvarez, M., Santamaria, C., Thoorens, F.-X., Kourti, N., Argentieri, P.: The sumo ship detector algorithm for satellite radar images. Remote Sens. 9(3), 246 (2017)
IMO. Technical characteristics for an automatic identification system using time division multiple access in the vhf maritime mobile frequency band. Tech. rep., ITU (2017)
IMO. Long-range identification and tracking system. Tech. rep., IMO (2018)
Improving maritime situational awareness through big data analytics, machine learning and artificial intelligence. Anomaly detection white paper, MarineTraffic Research (2019). https://www.marinetraffic.com/research/publication/anomaly-detection-white-paper/
Jousselme, A.-L., Ray, C., Camossi, E., Hadzagic, M., Claramunt, C., Bryan, K., Reardon, E., Ilteris, M.: Maritime use case description, h2020 datACRON project deliverable d5.1. http://datacron-project.eu/ (2016)
Katzouris, N., Artikis, A., Paliouras, G.: Online learning of event definitions. Theory Pract. Log. Program. 16(5–6), 817–833 (2016)
Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems, 1st edn. Manning Publications Co., Shelter Island (2015)
Michelioudakis, E., Artikis, A., Paliouras, G.: Semi-supervised online structure learning for composite event recognition. Mach. Learn. 108(7) , 1085–1110 (2019)
Millefiori, L.M., Zissis, D., Cazzanti, L., Arcieri, G.: A distributed approach to estimating sea port operational regions from lots of AIS data. In: 2016 IEEE International Conference on Big Data, BigData 2016, Washington DC, 5–8 December 2016, pp. 1627–1632 (2016)
Mills, C.M., Townsend, S.E., Jennings, S., Eastwood, P.D., Houghton, C.A.: Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES J. Mar. Sci. 64(2), 248–255 (2007)
Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event recognition from moving vessel trajectories. GeoInformatica 21(2), 389–427 (2017)
Pitsikalis, M., Artikis, A., Dreo, R., Ray, C., Camossi, E., Jousselme, A.: Composite event recognition for maritime monitoring. In: Proceedings of the 13th ACM International Conference on Distributed and Event-based Systems, DEBS 2019, Darmstadt, 24–28 June 2019, pp. 163–174 (2019)
Santipantakis, G.M., Vlachou, A., Doulkeridis, C., Artikis, A., Kontopoulos, I., Vouros, G.A.: A stream reasoning system for maritime monitoring. In: 25th International Symposium on Temporal Representation and Reasoning, TIME 2018, Warsaw, 15–17 October 2018, pp. 20:1–20:17 (2018)
Terroso-Saenz, F., Valdes-Vela, M., Skarmeta-Gomez, A.F.: A complex event processing approach to detect abnormal behaviours in the marine environment. Inf. Syst. Front. 18(4), 765–780 (2016)
van Laere, J., Nilsson, M.: Evaluation of a workshop to capture knowledge from subject matter experts in maritime surveillance. In: Proceedings of FUSION, pp. 171–178 (2009)
Vouros, G.A., Vlachou, A., Santipantakis, G.M., Doulkeridis, C., Pelekis, N., Georgiou, H.V., Theodoridis, Y., Patroumpas, K., Alevizos, E., Artikis, A., Claramunt, C., Ray, C., Scarlatti, D., Fuchs, G., Andrienko, G.L., Andrienko, N.V., Mock, M., Camossi, E., Jousselme, A., Garcia, J.M.C.: Big data analytics for time critical mobility forecasting: recent progress and research challenges. In: Proceedings of the 21th International Conference on Extending Database Technology, EDBT 2018, Vienna, 26–29 March 2018, pp. 612–623 (2018)
Vouros, G.A., Vlachou, A., Santipantakis, G.M., Doulkeridis, C., Pelekis, N., Georgiou, H.V., Theodoridis, Y., Patroumpas, K., Alevizos, E., Artikis, A., Fuchs, G., Mock, M., Andrienko, G.L., Andrienko, N.V., Claramunt, C., Ray, C., Camossi, E., Jousselme, A.: Increasing maritime situation awareness via trajectory detection, enrichment and recognition of events. In: Web and Wireless Geographical Information Systems - Proceedings of 16th International Symposium, W2GIS 2018, A Coruña, 21–22 May 2018, pp. 130–140 (2018)
Acknowledgements
This work was supported by the datACRON and the INFORE projects, which have received funding from the European Union’s Horizon 2020 research and innovation programme, under grant agreements No 687591 and No 825070.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Pitsikalis, M., Bereta, K., Vodas, M., Zissis, D., Artikis, A. (2020). Event Processing for Maritime Situational Awareness . In: Vouros, G., et al. Big Data Analytics for Time-Critical Mobility Forecasting. Springer, Cham. https://doi.org/10.1007/978-3-030-45164-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-45164-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45163-9
Online ISBN: 978-3-030-45164-6
eBook Packages: Computer ScienceComputer Science (R0)