Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Identification of Diabetic Macular Edema Biomarkers Using Optical Coherence Tomography Scans

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2019 (EUROCAST 2019)

Abstract

Optical Coherence Tomography (OCT) imaging has revolutionized the daily clinical practice, especially in the field of ophthalmology. Diabetic Macular Edema (DME) is one of the most important complications of diabetes and a leading cause of preventable blindness in the developed countries. In this way, a precise identification and analysis of DME biomarkers allow the clinical specialists to make a more accurate diagnosis and treatment of this relevant ocular disease.

Thus, in this work, we present a computational system for the automatic identification and extraction of DME biomarkers by the analysis of OCT scans, following the clinical classification of reference in the ophthalmological field. The presented method was validated using a dataset composed by 40 OCT images that were retrieved from different patients. Satisfactory results were obtained, providing a consistent and coherent set of different computational biomarkers that can help the clinical specialists in their diagnostic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, R., Wong, T.Y., Sabanayagam, C.: Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2(1), 17 (2015)

    Article  Google Scholar 

  2. Romero-Aroca, P.: Managing diabetic macular edema: the leading cause of diabetes blindness. World J. Diabetes 2(6), 98 (2011)

    Article  Google Scholar 

  3. de Moura, J., Novo, J., Charlón, P., Barreira, N., Ortega, M.: Enhanced visualization of the retinal vasculature using depth information in OCT. Med. Biol. Eng. Comput. 55(12), 2209–2225 (2017). https://doi.org/10.1007/s11517-017-1660-8

    Article  Google Scholar 

  4. de Moura, J., Novo, J., Rouco, J., Penedo, M.G., Ortega, M.: Automatic identification of intraretinal cystoid regions in optical coherence tomography. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 305–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_35

    Chapter  Google Scholar 

  5. de Moura, J., Novo, J., Penas, S., Ortega, M., Silva, J., Mendonça, A.M.: Automatic characterization of the serous retinal detachment associated with the subretinal fluid presence in optical coherence tomography images. Procedia Comput. Sci. 126, 244–253 (2018)

    Article  Google Scholar 

  6. Schmitt, J.: Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999)

    Article  Google Scholar 

  7. Otani, T., Kishi, S., Maruyama, Y.: Patterns of diabetic macular edema with optical coherence tomography. Am. J. Ophthalmol. 127(6), 688–693 (1999)

    Article  Google Scholar 

  8. Panozzo, G., et al.: Diabetic macular edema: an OCT-based classification. In: Seminars in Ophthalmology, vol. 19, pp. 13–20. Taylor & Francis (2004)

    Google Scholar 

  9. Sidibé, D., et al.: An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images. Comput. Methods Programs Biomed. 139, 109–117 (2017)

    Article  Google Scholar 

  10. Quellec, G., Lee, K., Dolejsi, M., Garvin, M., Abramoff, M., Sonka, M.: Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010)

    Article  Google Scholar 

  11. Wilkins, J., et al.: Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103(12), 2142–2151 (1996)

    Article  Google Scholar 

  12. González-López, A., de Moura, J., Novo, J., Ortega, M., Penedo, M.G.: Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model. Heliyon 5(2), e01271 (2019)

    Article  Google Scholar 

  13. Samagaio, G., Estévez, A., de Moura, J., Novo, J., Fernández, I., Ortega, M.: Automatic macular edema identification and characterization using OCT images. Comput. Methods Programs Biomed. 163, 47–63 (2018)

    Article  Google Scholar 

  14. Othman, S., Manan, F., Zulkarnain, A., Mohamad, Z., Ariffin, A.: Macular thickness as determined by optical coherence tomography in relation to degree of myopia, axial length and vitreous chamber depth in malay subjects. Clin. Exp. Optom. 95(5), 484–491 (2012)

    Article  Google Scholar 

  15. Baamonde, S., de Moura, J., Novo, J., Ortega, M.: Automatic detection of epiretinal membrane in OCT images by means of local luminosity patterns. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10305, pp. 222–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59153-7_20

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds through the DTS18/00136 research project and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim de Moura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Moura, J. et al. (2020). Automatic Identification of Diabetic Macular Edema Biomarkers Using Optical Coherence Tomography Scans. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12014. Springer, Cham. https://doi.org/10.1007/978-3-030-45096-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45096-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45095-3

  • Online ISBN: 978-3-030-45096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics