Nothing Special   »   [go: up one dir, main page]

Skip to main content

Electromagnetic Wave with OAM and Its Potential Applications in IoT

  • Conference paper
  • First Online:
IoT as a Service (IoTaaS 2019)

Abstract

As one of the hot techniques, the Internet of Things (IoT) is gradually penetrating all aspects of human life. The limitation of the spectrum resources has limited the development of the IoT, which forces us to look for new ways to increase the efficiency of the spectrum utilization. The Electromagnetic (EM) wave with orbital angular momentum (OAM), also called the EM vortex wave is a promising method to solve this problem. In this article, the basic theory of EM wave with OAM in radio frequency (RF) is introduced and the main techniques in the OAM radio beam, including the generation of the EM with OAM, the receive, the multiplexing based on OAM mode are summarized. Based on the main properties of EM wave with OAM in RF, the potential applications of EM vortex beam in the IoT are discussed.

Supported by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashton, K.: That ‘Internet of Things’ thing. RFID J. 22(7), 97–114 (2009)

    Google Scholar 

  2. Tamburini, F., Mari, E., Sponselli, A., Thidé, B., Bianchini, A., Romanato, F.: Encoding many channels on the same frequency through radio vorticity: first experimental test. New J. Phys. 14(3), 033001 (2012)

    Article  Google Scholar 

  3. Loudon, R., Baxter, C.: Contributions of John Henry Poynting to the understanding of radiation pressure. Proc. Math. Phys. Eng. Sci. 468(2143), 1825–1838 (2012)

    Article  MathSciNet  Google Scholar 

  4. Allen, L., Barnett, S.M., Padgett, M.J.: Optical Angular Momentum. IoP Publishing, Bristol (2003)

    Book  Google Scholar 

  5. Indebetouw, G.: Optical vortices and their propagation. J. Mod. Opt. 40, 73–87 (1993)

    Article  Google Scholar 

  6. Zhao, X., Zhang, J., Pang, X., Wan, G.: Properties of a strongly focused Gaussian beam with an off-axis vortex. Opt. Commun. 389, 275–282 (2017)

    Article  Google Scholar 

  7. Pang, X., Miao, W.: Spinning spin density vectors along the propagation direction. Opt. Lett. 43(19), 4831–4834 (2018)

    Article  Google Scholar 

  8. Li, J., Zhang, J., Li, J.: Optical twists and transverse focal shift in a strongly focused, circularly polarized vortex field. Opt. Commun. 439, 284–289 (2019)

    Article  Google Scholar 

  9. Dholakia, K., Čižmár, T.: Shaping the future of manipulation. Nat. Photon. 5(6), 335–342 (2011)

    Article  Google Scholar 

  10. Rittweger, E., Han, K.Y., Irvine, S.E., Eggeling, C., Hell, S.W.: Sted microscopy reveals crystal colour centres with nanometric resolution. Nat. Photon. 3(3), 144–147 (2009)

    Article  Google Scholar 

  11. Molina-Terriza, G., Torres, J.P., Torner, L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88(1), 013601 (2001)

    Article  Google Scholar 

  12. Jackson, J.D., Fox, R.F.: Classical Electrodynamics, 3rd ed. Wiley, New york (1999). American Journal of Physics, 67(9), 841–842

    Google Scholar 

  13. Thidé, B., et al.: Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99(8), 087701 (2007)

    Article  Google Scholar 

  14. Courtial, J., Zambrini, R., Dennis, M.R., Vasnetsov, M.: Angular momentum of optical vortex arrays. Opt. Express 14(2), 938–949 (2006)

    Article  Google Scholar 

  15. Mohammadi, S.M., et al.: Orbital angular momentum in radio—a system study. IEEE Trans. Antennas Propag. 58(2), 565–572 (2009)

    Article  Google Scholar 

  16. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3(2), 161–204 (2011)

    Article  Google Scholar 

  17. Wang, J., et al.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6(7), 488 (2012)

    Article  Google Scholar 

  18. Cheng, W., Zhang, W., Jing, H., Gao, S., Zhang, H.: Orbital angular momentum for wireless communications. IEEE Wireless Commun. 26(1), 100–107 (2018)

    Article  Google Scholar 

  19. Gong, Y., et al.: Generation and transmission of OAM-carrying vortex beams using circular antenna array. IEEE Trans. Antennas Propag. 65(6), 2940–2949 (2017)

    Article  MathSciNet  Google Scholar 

  20. Tennant, A., Allen, B.: Generation of OAM radio waves using circular time-switched array antenna. Electron. Lett. 48(21), 1365–1366 (2012)

    Article  Google Scholar 

  21. Gao, X., et al.: Generating, multiplexing/demultiplexing and receiving the orbital angular momentum of radio frequency signals using an optical true time delay unit. J. Opt. 15(10), 105401 (2013)

    Article  Google Scholar 

  22. Turnbull, G., Robertson, D., Smith, G., Allen, L., Padgett, M.: The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Opt. Commun. 127(4–6), 183–188 (1996)

    Article  Google Scholar 

  23. Huang, W.Y., Li, J.L., Wang, H.Z., Wang, J.P., Gao, S.S.: Vortex electromagnetic waves generated by using a laddered spiral phase plate and a microstrip antenna. Electromagnetics 36(2), 102–110 (2016)

    Article  Google Scholar 

  24. Zheng, S., Hui, X., Jin, X., Chi, H., Zhang, X.: Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna. IEEE Trans. Antennas Propag. 63(4), 1530–1536 (2015)

    Article  MathSciNet  Google Scholar 

  25. Yu, S., Li, L., Shi, G., Zhu, C., Zhou, X., Shi, Y.: Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett. 108(12), 121903 (2016)

    Article  Google Scholar 

  26. Shen, Y., Yang, J., Meng, H., Dou, W., Hu, S.: Generating millimeter-wave bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source. Appl. Phys. Lett. 112(14), 141901 (2018)

    Article  Google Scholar 

  27. Veysi, M., Guclu, C., Capolino, F., Rahmat-Samii, Y.: Revisiting orbital angular momentum beams: fundamentals, reflectarray generation, and novel antenna applications. IEEE Antennas Propag. Mag. 60(2), 68–81 (2018)

    Article  Google Scholar 

  28. Zhang, Y., Lyu, Y., Wang, H., Zhang, X., Jin, X.: Transforming surface wave to propagating oam vortex wave via flat dispersive metasurface in radio frequency. IEEE Antennas Wireless Propag. Lett. 17(1), 172–175 (2017)

    Article  Google Scholar 

  29. Uchida, M., Tonomura, A.: Generation of electron beams carrying orbital angular momentum. Nature 464(7289), 737 (2010)

    Article  Google Scholar 

  30. Mohammadi, S.M., et al.: Orbital angular momentum in radio: measurement methods. Radio Sci. 45(4), 1–14 (2010)

    Article  Google Scholar 

  31. Hu, Y., Zheng, S., Zhang, Z., Chi, H., Jin, X., Zhang, X.: Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme. IET Microw. Antennas Propag. 10(10), 1043–1047 (2016)

    Article  Google Scholar 

  32. Feng, Q., Xue, H., Liu, Y., Li, L.: Multiple orbital angular momentum vortex electromagnetic waves multiplex transmission and demultiplex reception analysis. In: 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), pp. 1–3. IEEE (2018)

    Google Scholar 

  33. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and Challenges for Realising the Internet of Things. Cluster of European Research Projects on the Internet of Things, European Commision, vol. 3, no. 3, pp. 34–36 (2010)

    Google Scholar 

  34. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on Internet of Things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Article  Google Scholar 

  35. Ray, P.P.: A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 30(3), 291–319 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Pang, X., Feng, C. (2020). Electromagnetic Wave with OAM and Its Potential Applications in IoT. In: Li, B., Zheng, J., Fang, Y., Yang, M., Yan, Z. (eds) IoT as a Service. IoTaaS 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 316. Springer, Cham. https://doi.org/10.1007/978-3-030-44751-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44751-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44750-2

  • Online ISBN: 978-3-030-44751-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics