Abstract
In 2012 the United States passed legislation, penalizing hospitals for readmission of patients discharged within 30 days. However, many unknowns mean that hospitals cannot predict when each patient is appropriate to discharge. Through researching readmissions across the Thomas Jefferson University Hospital enterprise, we found that staff must make judgement calls based on their own clinical perspectives. Rather than expecting doctors to somehow intuit the interaction effects from thousands of variables, we surface trends and present strategies for mitigating readmission risks through machine learning (ML). Commonly, ML models are trained against data aggregated from various sources. This method of sourcing interferes with responding to population-based risk factors and variables that are specific to the hospital of interest. However, creating a custom model presents its own set of hurdles. The work of our team provides hospitals everywhere with an end-to-end pipeline to create a readmissions assessment tool, using their own data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Robinson, R., Hudali, T.: The HOSPITAL score and LACE index as predictors of 30-day readmission in a retrospective study at a university-affiliated community hospital. PeerJ 5, e3137 (2017). https://doi.org/10.7717/peerj.3137
van Walraven, C., Dhalla, I.A., Bell, C., Etchells, E., Stiell, I.G., Zarnke, K., Forster, A.J.: Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Cmaj 182(6), 551–557 (2010). https://doi.org/10.1503/cmaj.091117
Donzé, J.D., Williams, M.V., Robinson, E.J., et al.: International validity of the HOSPITAL score to predict 30-day potentially avoidable hospital readmissions. JAMA Intern. Med. 176(4), 496–502 (2016). https://doi.org/10.1001/jamainternmed.2015.8462
Morgan, D.J., Bame, B., Zimand, P., et al.: Assessment of machine learning vs standard prediction rules for predicting hospital readmissions. JAMA Netw. Open. 2(3), e190348 (2019). 10.1001/jamanetworkopen.2019.0348
Amarasingham, R., Moore, B.J., Tabak, Y.P., Drazner, M.H., Clark, C.A., Zhang, S., Halm, E.A.: An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med. Care 48(11), 981–988 (2010). https://doi.org/10.1097/MLR.0b013e3181ef60d9. PMID: 20940649. Issn Print: 0025-7079
Holloway, J.J., Thomas, J.W., Shapiro, L.: Clinical and sociodemographic risk factors for readmission of medicare beneficiaries. Health Care Finan. Rev. 10(1), 27–36 (1988)
Makam, A.N., Nguyen, O.K., Clark, C., Zhang, S., Xie, B., Mark Weinreich, M.D., Mortensen, E.M., Halm, E.A.: Predicting 30-day pneumonia readmissions using electronic health record data. J. Hosp. Med. 4, 209–216 (2017). https://doi.org/10.12788/jhm.2711
Steventon, A., Billings, J.: Preventing hospital readmissions: the importance of considering ‘impactibility’, not just predicted risk. BMJ Qual. Saf. 26, 782–785 (2017)
Goldfield, N.I., McCullough, E.C., Hughes, J.S., et al.: Identifying potentially preventable readmissions. Health Care Finan. Rev. 30(1), 75–91 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mitts, A., D’souza, T., Sadler, B., Battistini, D., Vuong, D. (2020). Solving the Revolving Door Problem: Machine Learning for Readmission Risk Assessment. In: Ahram, T., Taiar, R., Gremeaux-Bader, V., Aminian, K. (eds) Human Interaction, Emerging Technologies and Future Applications II. IHIET 2020. Advances in Intelligent Systems and Computing, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-44267-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-44267-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44266-8
Online ISBN: 978-3-030-44267-5
eBook Packages: EngineeringEngineering (R0)