Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Enhanced Blockchain-Based Data Management Scheme for Microgrids

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2020)

Abstract

Trading of distributed energy resources is an important aspect to fully achieve energy efficiency. Modern microgrids and consumer/prosumer energy transactions are such kind of enablers. The blockchain has been proposed as a solution to aid microgrid applications with the support of a decentralized trading model, operations processing, computation and storage. However, microgrids trading is still vulnerable to so-called False Data Injection (FDI) attacks, that is the attempt by malicious participating nodes to distribute false measurements to the peers to gain personal advantages. In this paper, we propose an enhanced blockchain mechanism to counteract possible FDI attacks by means of mobile software agents to control and detect malicious activities of sellers nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arekete, S.A., Oguntunde, B.O., Ore-Adewole, O.G.: Development of a mobile agent system for monitoring memory usage in a network. Int. J. Eng. Sci. (IJES) 6, 1–13 (2017)

    Article  Google Scholar 

  2. Beg, O.A., Johnson, T.T., Davoudi, A.: Detection of false-data injection attacks in cyber-physical dc microgrids. IEEE Trans. Ind. Inform. 13(5), 2693–2703 (2017)

    Article  Google Scholar 

  3. Chlela, M., Joos, G., Kassouf, M., Brissette, Y.: Real-time testing platform for microgrid controllers against false data injection cybersecurity attacks. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5. IEEE (2016)

    Google Scholar 

  4. Goranović, A., Meisel, M., Fotiadis, L., Wilker, S., Treytl, A., Sauter, T.: Blockchain applications in microgrids an overview of current projects and concepts. In: IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 6153–6158. IEEE (2017)

    Google Scholar 

  5. Haq, I.N., Leksono, E., Iqbal, M., Sodami, F.N., Kurniadi, D., Yuliarto, B., et al.: Development of battery management system for cell monitoring and protection. In: 2014 International Conference on Electrical Engineering and Computer Science (ICEECS), pp. 203–208. IEEE (2014)

    Google Scholar 

  6. He, Y., Mendis, G.J., Wei, J.: Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 8(5), 2505–2516 (2017)

    Article  Google Scholar 

  7. Hyperledger: Hyperledger fabric (2019). https://github.com/hyperledger/fabric

  8. Islam, S.N., Mahmud, M., Oo, A.: Impact of optimal false data injection attacks on local energy trading in a residential microgrid. Ict Express 4(1), 30–34 (2018)

    Article  Google Scholar 

  9. Kang, E.S., Pee, S.J., Song, J.G., Jang, J.W.: A blockchain-based energy trading platform for smart homes in a microgrid. In: 2018 3rd International Conference on Computer and Communication Systems (ICCCS), pp. 472–476. IEEE (2018)

    Google Scholar 

  10. Khan, A.A., Naeem, M., Iqbal, M., Qaisar, S., Anpalagan, A.: A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids. Renew. Sustain. Energy Rev. 58, 1664–1683 (2016)

    Article  Google Scholar 

  11. Liu, X., Li, Z.: False data attack models, impact analyses and defense strategies in the electricity grid. Electr. J. 30(4), 35–42 (2017)

    Article  Google Scholar 

  12. Mariam, L., Basu, M., Conlon, M.F.: Microgrid: architecture, policy and future trends. Renew. Sustain. Energy Rev. 64, 477–489 (2016). https://doi.org/10.1016/j.rser.2016.06.037. www.sciencedirect.com/science/article/pii/S1364032116302635

    Article  Google Scholar 

  13. Mbarek, B., Jabeur, N., Pitner, T., et al.: Mbs: multilevel blockchain system for IoT. Pers. Ubiquit. Comput. pp. 1–8 (2019)

    Google Scholar 

  14. Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., Weinhardt, C.: A blockchain-based smart grid: towards sustainable local energy markets. Comput. Sci.-Res. Dev. 33(1–2), 207–214 (2018)

    Article  Google Scholar 

  15. Minchala-Avila, L.I., Garza-Castañón, L.E., Vargas-Martínez, A., Zhang, Y.: A review of optimal control techniques applied to the energy management and control of microgrids. Proc. Comput. Sci. 52, 780–787 (2015)

    Article  Google Scholar 

  16. Patrao, I., Figueres, E., Garcerá, G., González-Medina, R.: Microgrid architectures for low voltage distributed generation. Renew. Sustain. Energy Rev. 43, 415–424 (2015). https://doi.org/10.1016/j.rser.2014.11.054. www.sciencedirect.com/science/article/pii/S1364032114009939

    Article  Google Scholar 

  17. Sabounchi, M., Wei, J., et al.: Blockchain-enabled peer-to-peer data trading mechanism. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1410–1416. IEEE (2018)

    Google Scholar 

  18. Střelec, M., Hering, P., Janeček, P., Georgiev, D., Voráč, P.: Optimal procurement of ancillary services considering balance and system security criteria. In: 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), pp. 1–5 (2019). https://doi.org/10.1109/ISGTEurope.2019.8905458

  19. Talebi, M., Li, C., Qu, Z.: Enhanced protection against false data injection by dynamically changing information structure of microgrids. In: 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 393–396. IEEE (2012)

    Google Scholar 

  20. Ton, D.T., Smith, M.A.: The us department of energy’s microgrid initiative. Electr. J. 25(8), 84–94 (2012)

    Article  Google Scholar 

  21. Wang, N., Zhou, X., Lu, X., Guan, Z., Wu, L., Du, X., Guizani, M.: When energy trading meets blockchain in electrical power system: the state of the art. Appl. Sci. 9(8), 1561 (2019)

    Article  Google Scholar 

  22. Xing, Y., Ma, E.W., Tsui, K.L., Pecht, M.: Battery management systems in electric and hybrid vehicles. Energies 4(11), 1840–1857 (2011)

    Article  Google Scholar 

  23. Yu, W., Griffith, D., Ge, L., Bhattarai, S., Golmie, N.: An integrated detection system against false data injection attacks in the smart grid. Secur. Commun. Netw. 8(2), 91–109 (2015)

    Article  Google Scholar 

  24. Yu, Y., Guo, Y., Min, W., Zeng, F.: Trusted transactions in micro-grid based on blockchain. Energies 12(10), 1952 (2019)

    Article  Google Scholar 

  25. Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation systems. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2663–2668. IEEE (2016)

    Google Scholar 

  26. Zhang, X., Yang, X., Lin, J., Yu, W.: On false data injection attacks against the dynamic microgrid partition in the smart grid. In: 2015 IEEE International Conference on Communications (ICC), pp. 7222–7227. IEEE (2015)

    Google Scholar 

Download references

Acknowledgements

The research was supported from ERDF/ESF “CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence” (No. CZ.02.1.01/0.0/0.0/16_019/ 0000822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bacem Mbarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mbarek, B., Chren, S., Rossi, B., Pitner, T. (2020). An Enhanced Blockchain-Based Data Management Scheme for Microgrids. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol 1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_70

Download citation

Publish with us

Policies and ethics