Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards E-mobility: Strengths and Weaknesses of Electric Vehicles

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2020)

Abstract

One of the greatest environmental challenges worldwide is mobility. In future, increasingly sustainable solutions will be proposed and incentivized and the new technologies, like electric mobility, could (positive) influence mobility performances/habits. The paper aims at critically analyze weaknesses, strengths and application fields of the electric mobility in Italy. Specifically, the electric vehicle today has high production costs, low autonomy and not “zero” environmental impacts deriving from the production, motion and recycling of the vehicle. However, the “local emissions” are null and this pone this technology useful for urban mobility, where high population density often occurs. Furthermore, e-mobility is useful within the new forms of mobility (e.g. MaaS - mobility as a service) where micro mobility, shared mobility, urban bus fleet, freight distribution and an overall higher willingness to pay for users/operators could emphasize the strengths of e-mobility, reducing its weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. EUROPEA, Commissione: Un futuro sostenibile per i trasporti (2009)

    Google Scholar 

  2. Marioli, L.: Mobilità sostenibile e trasporto intermodale. Rivista di diritto dell’economia, dei trasporti e dell’ambiente 11, 19–39 (2013)

    Google Scholar 

  3. GSE (Gestore Servizi Energetici): Energia nel settore trasporti: quadro statistico di riferimento e monitoraggio target UE (2017)

    Google Scholar 

  4. Galante, F., Bracco, F., Chiorri, C., Pariota, L., Biggero, L., Bifulco, G.N.: Validity of mental workload measures in a driving simulation environment. J. Adv. Transp. 2018, 11 (2018)

    Google Scholar 

  5. Cascetta, E., Carteni, A., Pagliara, F., Montanino, M.: A new look at planning and designing transportation systems: a decision-making model based on cognitive rationality, stakeholder engagement and quantitative methods. Transp. Policy 38, 27–39 (2015)

    Article  Google Scholar 

  6. Cartenì, A.: Urban sustainable mobility. Part 1: rationality in transport planning. Transp. Probl. 9(4), 39–48 (2014)

    Google Scholar 

  7. Cascetta, E., Cartenì, A., Henke, I.: Acceptance and equity in advanced path-related road pricing schemes. In: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 492–496. IEEE (2017)

    Google Scholar 

  8. An, S., Lee, B., Shin, D.: A survey of intelligent transportation systems. In: Third International Conference on Computational Intelligence, Communication Systems and Networks. IEEE (2011)

    Google Scholar 

  9. Botte, M., Pariota, L., D’Acierno, L., Bifulco, G.N.: An overview of cooperative driving in the european union: policies and practices. Electronics 8(6), 616 (2019)

    Article  Google Scholar 

  10. Jiao, J., Bischak, C., Hyden, S.: The impact of shared mobility on trip generation behavior in the US: findings from the 2017 National Household Travel Survey. Travel Behav. Soc. 19, 1–7 (2020)

    Article  Google Scholar 

  11. Mulley, C.: Mobility as a Services (MaaS) – does it have critical mass? Transp. Rev. 37(3), 247–251 (2017)

    Article  Google Scholar 

  12. Jittrapirom, P., Caiati, V., Feneri, A.M., Ebrahimigharehbaghi, S., Alonso González, M.J., Narayan, J.: Mobility as a service: a critical review of definitions, assessments of schemes, and key challenges (2017)

    Google Scholar 

  13. Hietanen, S.: Mobility as a Service. The New Transport Model, pp. 2–4 (2014)

    Google Scholar 

  14. Guarnieri, M.: When cars went electric, part one [historical]. IEEE Ind. Electron. Mag. 5(1), 61–62 (2011)

    Article  Google Scholar 

  15. Yong, J.Y., Ramachandaramurthy, V.K., Tan, K.M., Mithulananthan, N.: A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 49, 365–385 (2015)

    Article  Google Scholar 

  16. Morimoto, M.: Which is the first electric vehicle? Electr. Eng. Jpn 192(2), 31–38 (2015)

    Article  Google Scholar 

  17. Westbrook, M.H.: The Electric Car: Development and Future of Battery. Hybrid and Fuel-Cell Cars. The Institution of Electrical Engineers, London (2001)

    Book  Google Scholar 

  18. Sulzberger, C.: An early road warrior: electric vehicles in the early years of the automobile. IEEE Power Energy Mag. 2(3), 66–71 (2004)

    Article  Google Scholar 

  19. Cowan, R., Hultén, S.: Escaping lock-in: the case of the electric vehicle. Technol. Forecast. Soc. Change 53(1), 61–79 (1996)

    Article  Google Scholar 

  20. Høyer, K.G.: The history of alternative fuels in transportation: the case of electric and hybrid cars. Util. Policy 16(2), 63–71 (2008)

    Article  Google Scholar 

  21. D’Agostino, S.: The electric car. IEEE Potentials 12(1), 28–32 (1993)

    Article  Google Scholar 

  22. Walker, S., Hipel, K.W., Inohara, T.: Strategic analysis of the Kyoto protocol. In: Conference on IEEE International Systems, Man and Cybernetics (ISIC), 1806–1811 (2007)

    Google Scholar 

  23. Longo, M., Zaninelli, D., Viola, F., Romano, P., Miceli, R.: Electric vehicles impact using renewable energy. In: 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), pp. 1–7. IEEE (2015)

    Google Scholar 

  24. Protocol, K.: United Nations framework convention on climate change. Kyoto Protoc. Kyoto 19 (1997)

    Google Scholar 

  25. Rajashekara, K.: History of electric vehicles in General motors. IEEE Trans. Ind. Appl. 30(4), 897–904 (1994)

    Article  Google Scholar 

  26. Rajashekara, K.: Present status and future trends in electric vehicle propulsion technologies. IEEE J. Emerg. Sel. Top. Power Electron. 1(1), 3–10 (2013)

    Article  Google Scholar 

  27. Cartenì, A., De Guglielmo, M.L., Henke, I.: Design of sustainable urban transport infrastructures: a real case application in Italy. Int. J. Civ. Eng. Technol. IJCIET 9(10), 2131–2147 (2018)

    Google Scholar 

  28. Carteni, A., Henke, I.: External costs estimation in a cost-benefit analysis: the new Formia-Gaeta tourist railway line in Italy. In: 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–6. IEEE (2017)

    Google Scholar 

  29. Cartenì, A.: A cost-benefit analysis based on the carbon footprint derived from plug-in hybrid electric buses for urban public transport services. WSEAS Trans. Environ. Dev. 14, 125–135 (2018)

    Google Scholar 

  30. Cartenì, A., Henke, I., Molitierno, C.: A cost-benefit analysis of the metro line 1 in Naples, Italy. WSEAS Trans. Bus. Econ. 15, 529–538 (2018)

    Google Scholar 

  31. Cartenì, A., Henke, I.: The evaluation of public investments according to the cost-benefit analysis: an application to the formia-gaeta railway line [La valutazione degli investimentiin opere pubbliche attraverso l’analisi costi-benefici: Un’applicazione alla riqualificazione della linea ferroviaria formia-gaeta]. Ingegneria Ferroviaria 74(9), 651–681 (2019)

    Google Scholar 

  32. Cartenì, A., Henke, I., Di Bartolomeo, M.I., Regna, M.: A cost-benefit analysis of a fully-automated driverless metro line in a high-density metropolitan area in Italy. In: 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–6. IEEE (2019)

    Google Scholar 

  33. Bigerna, S., Micheli, S.: Attitudes toward electric vehicles: the case of Perugia using a fuzzy set analysis. Sustainability 10(11), 3999 (2018)

    Article  Google Scholar 

  34. Cartenì, A., Cascetta, E., de Luca, S.: A random utility model for park & carsharing services and the pure preference for electric vehicles. Transp. Policy 48, 49–59 (2016)

    Article  Google Scholar 

  35. Cascetta, E., Cartenì, A., Henke, I.: Stations quality, aesthetics and attractiveness of rail transport: empirical evidence and mathematical models [Qualità delle stazioni, estetica e attrattività del trasporto ferroviario: evidenze empiriche e modelli matematici]. Ingegneria Ferroviaria 69(4), 307–324 (2014)

    Google Scholar 

  36. Cartenì, A., Pariota, L., Henke, I.: Hedonic value of high-speed rail services: quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities. Transp. Res. Part A: Policy Pract. 100, 348–365 (2017)

    Google Scholar 

  37. D’Acierno, L., Gallo, M., Montella, B., Placido, A.: Analysis of the interaction between travel demand and rail capacity constraints. WIT Trans. Built Environ. 128, 197–207 (2012)

    Article  Google Scholar 

  38. D’Acierno, L., Gallo, M., Montella, B., Placido, A.: The definition of a model framework for managing rail systems in the case of breakdowns. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 1059–1064. IEEE (2013)

    Google Scholar 

  39. Markkula, G., Romano, R., Jamson, A.H., Pariota, L., Bean, A., Boer, E.R.: Using driver control models to understand and evaluate behavioral validity of driving simulators. IEEE Trans. Hum.-Mach. Syst. 48(6), 592–603 (2018)

    Article  Google Scholar 

  40. Cartenì, A.: Processi decisionali e Pianificazione dei trasporti. Lulu Enterprises (2016)

    Google Scholar 

  41. Scarborough, P., Appleby, P.N., Mizdrak, A., Briggs, A.D.M., Travis, R.C., Bradbury, K.E., Key, T.J.: Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Change 125, 179–192 (2014)

    Article  Google Scholar 

  42. Goldman, T., Gorham, R.: Sustainable urban transport: four innovative directions. Technol. Soc. 28(1–2), 261–273 (2006)

    Article  Google Scholar 

  43. Repower: La mobilità sostenibile e i veicoli elettrici, III Rapporto 2019 (2019)

    Google Scholar 

Download references

Acknowledgment

This research was carried out within the project: “Consultazione per la revisione e il consolidamento delle linee strategiche di Ricerca e Innovazione nell’ambito di sviluppo dell’infrastruttura AV/AC Napoli-Bari - POR ASSE IV – AV/AC - 04”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Carteni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carteni, A., Henke, I., Molitierno, C., Errico, A. (2020). Towards E-mobility: Strengths and Weaknesses of Electric Vehicles. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol 1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_126

Download citation

Publish with us

Policies and ethics