Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluation of the Interpolation Errors of Tomographic Projection Models

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11845))

Included in the following conference series:

  • 1585 Accesses

  • 2 Citations

Abstract

Tomographic reconstruction algorithms perform reconstruction on a discrete grid, assuming a discrete projection model. However, such discrete assumptions bring artifacts into the reconstructed results, we call interpolation error. We compared eight projection models including the Joseph, Siddon or box-beam-integrated methods for analyzing their interpolation errors. We found that by selecting the proper projection model, one can gain significantly better reconstruction quality.

We are grateful to the Nvidia Hardware Grant program for providing a GPU for the research. Ministry of Human Capacities, Hungary, grant 20391-3/2018/FEKUSTRAT is acknowledged. This research was supported by the project “Integrated program for training new generation of scientists in the fields of computer science”, no EFOP-3.6.3-VEKOP-16-2017-0002. The project has been supported by the European Union and co-funded by the European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 13.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dataset. https://urlzs.com/y1UG3

  2. Matlab r2017b. The MathWorks Inc, Natick, Massachusetts, United States

    Google Scholar 

  3. van Aarle, W., et al.: Fast and flexible x-ray tomography using the astra toolbox. Opt. Express 24(22), 25129–25147 (2016)

    Article  Google Scholar 

  4. Andersen, A., Kak, A.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  5. Danielsson, P.E., Magnusson, M., Cvl, S.: Combining fourier and iterative methods in computer tomography: analysis of an iteration scheme. the 2D-case 49 (2004)

    Google Scholar 

  6. Flores, L., Vidal, V., Verdu, G.: System matrix analysis for computed tomography imaging. PLoS ONE 10, 1252–1255 (2015)

    Google Scholar 

  7. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical poissonian-gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hahn, K., Schondube, H., Stierstorfer, K., Hornegger, J., Noo, F.: A comparison of linear interpolation models for iterative CT reconstruction. Med. Phys. 43(12), 6455–6473 (2016)

    Article  Google Scholar 

  9. Hanson, K.M., Wecksung, G.W.: Local basis-function approach to computed tomography. Appl. Opt. 24, 4028 (1985)

    Article  Google Scholar 

  10. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)

    Article  Google Scholar 

  11. Herman, G.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, London (2009). https://doi.org/10.1007/978-1-84628-723-7

  12. Joseph, P.: An improved algorithm for reprojecting rays through pixel images. IEEE Trans. Med. Imaging 1(3), 192–196 (1982)

    Article  MathSciNet  Google Scholar 

  13. Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1999)

    MATH  Google Scholar 

  14. Shepp, L.A., Logan, B.F.: The fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21(3), 21–43 (1974)

    Article  Google Scholar 

  15. Lewitt, R.: Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys. Med. Biol. 37(3), 705–716 (1992)

    Article  Google Scholar 

  16. Man, B.D., Basu, S.: Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49, 2463–2475 (2004)

    Article  Google Scholar 

  17. Siddon, R.: Fast calculation of the exact radiological path for a three-dimensional ct array. Med. Phys. 12, 252–255 (1985)

    Article  Google Scholar 

  18. van der Sluis, A., van der Vorst, H.: SIRT- and CG-type methods for the iterative solution of sparse linear least-squares problems. Linear Algebra Appl. 130, 257–303 (1990)

    Article  MathSciNet  Google Scholar 

  19. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  20. Xu, F., Mueller, K.: A comparative study of popular interpolation and integration methods for use in computed tomography. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, vol. 4, pp. 1252–1255 (2006)

    Google Scholar 

  21. Yu, Z., Noo, F., Dennerlein, F., Wunderlich, A., Lauritsch, G., Hornegger, J.: Simulation tools for two-dimensional experiments in x-ray computed tomography using the for bild head phantom. Phys. Med. Biol. 57(13), 237–252 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Olasz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olasz, C., Varga, L.G., Nagy, A. (2019). Evaluation of the Interpolation Errors of Tomographic Projection Models. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33723-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33722-3

  • Online ISBN: 978-3-030-33723-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics