Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Visual Analytics Approach for Analyzing Technological Trends in Technology and Innovation Management

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11845))

Included in the following conference series:

Abstract

Visual Analytics provides with a combination of automated techniques and interactive visualizations huge analysis possibilities in technology and innovation management. Thereby not only the use of machine learning data mining methods plays an important role. Due to the high interaction capabilities, it provides a more user-centered approach, where users are able to manipulate the entire analysis process and get the most valuable information. Existing Visual Analytics systems for Trend Analytics and technology and innovation management do not really make use of this unique feature and almost neglect the human in the analysis process. Outcomes from research in information search, information visualization and technology management can lead to more sophisticated Visual Analytics systems that involved the human in the entire analysis process. We propose in this paper a new interaction approach for Visual Analytics in technology and innovation management with a special focus on technological trend analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: visualizing thematic changes in large document collections. IEEE TVCG 8(1), 9–20 (2002). http://dx.doi.org/10.1109/2945.981848

    Google Scholar 

  2. Liu, S., et al.: TIARA: interactive, topic-based visual text summarization and analysis. ACM Trans. Intell. Syst. Technol. 3(2), 25:1–25:28 (2012)

    Google Scholar 

  3. Dou, W., Wang, X., Chang, R., Ribarsky, W.: ParallelTopics: a probabilistic approach to exploring document collections. In: VAST 2011 (2011)

    Google Scholar 

  4. Collins, C., Viegas, F., Wattenberg, M.: Parallel tag clouds to explore and analyze faceted text corpora. In: VAST 2009 (2009)

    Google Scholar 

  5. Lee, B., Riche, N.H., Karlson, A.K., Carpendale, S.: SparkClouds: visualizingtrends in tag clouds. IEEE TVCG 16, 1182–1189 (2010)

    Google Scholar 

  6. Lohmann, S., Burch, M., Schmauder, H., Weiskopf, D.: Visual analysis of microblog content using time-varying co-occurrence highlighting in tag clouds. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI 2012, pp. 753–756. ACM, New York (2012)

    Google Scholar 

  7. Han, Q., Heimerl, F., Codina-Filba, J., Lohmann, S., Wanner, L., Ertl, T.: Visual patent trend analysis for informed decision making in technology management. World Patent Inf. 49, 34–42 (2017)

    Article  Google Scholar 

  8. Heimerl, F., Han, Q., Koch, S., Ertl, T.: CiteRivers: visual analytics of citation patterns. IEEE Trans. Vis. Comput. Graph. 22(1), 190–199 (2016)

    Article  Google Scholar 

  9. Wei, F., et al.: TIARA: a visual exploratory text analytic system. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 153–162. ACM, New York (2010)

    Google Scholar 

  10. Ernst, H.: Patent information for strategic technology management. World Patent Inf. 25(3), 233–242 (2003)

    Article  Google Scholar 

  11. Joho, H., Azzopardi, L.A., Vanderbauwhede, W.: A survey of patent users: an analysis of tasks, behavior, search functionality and system requirements. In: Proceedings of the Third Symposium on Information Interaction in Context, IIiX 2010, pp. 13–24. ACM, New York (2010)

    Google Scholar 

  12. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: VL, pp. 336–343 (1996)

    Google Scholar 

  13. van Ham, F., Perer, A.: Search, show context, expand on demand: supporting large graph exploration with degree-of-interest. IEEE Trans. Vis. Comput. Graph. 15, 953–960 (2009)

    Article  Google Scholar 

  14. Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)

    Article  Google Scholar 

  15. Bloom, B.S.: Taxonomy of Educational Objectives. David McKay Co., Inc., New York (1956)

    Google Scholar 

  16. White, R.W., Roth, R.A.: Exploratory Search: Beyond the Query-Response Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services. Marchionini, G. (ed.), vol. 1. Morgan & Claypool Publishers (2009)

    Google Scholar 

  17. Bruner, J.S.: The act of discovery. Harvard Educ. Rev. 31, 21–32 (1961)

    Google Scholar 

  18. Bonino, D., Ciaramella, A., Corno, F.: Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Inf. 32(1), 30–38 (2010)

    Article  Google Scholar 

  19. Nazemi, K., Retz, R., Burkhardt, D., Kuijper, A., Kohlhammer, J., Fellner, D.W.: Visual trend analysis with digital libraries. In: Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business - i-KNOW 2015. ACM Press (2015). https://doi.org/10.1145/2809563.2809569

  20. Nazemi, K., Burkhard, D.: Visual analytics for analyzing technological trends from text. In: 2019 23rd International Conference Information Visualisation (IV), pp. 191–200. IEEE (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Hessen State Ministry for Higher Education, Research and the Arts within the program “Forschung für die Praxis” and was conducted within the research group on Human-Computer Interaction and Visual Analytics (https://vis.h-da.de). The presentation of this work was supported by the Research Center for Digital Communication & Media Innovation of the Darmstadt University of Applied Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawa Nazemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nazemi, K., Burkhardt, D. (2019). A Visual Analytics Approach for Analyzing Technological Trends in Technology and Innovation Management. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33723-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33722-3

  • Online ISBN: 978-3-030-33723-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics