Abstract
Extraction of human emotions from facial expression has attracted significant attention in computer vision community. There are several appearance based techniques like local binary patterns (LBP), local directional patterns (LDP), local ternary patterns (LTP) and gradient local ternary patterns (GLTP). Recently, many investigations have been done to improve these feature extraction techniques. Although GLTP has achieved an improvement in robustness to noise and illumination, it encodes image gradient in four directions and two orientations only. This paper proposes to improve GLTP to directional gradient local ternary patterns (DGLTP) by encoding image gradient on eight directions and four orientations. The eight directional Kirsch mask is used to encode the image gradient followed by dimensionality reduction using linear discriminant analysis (LDA) and AVG, MAX and MIN pooling techniques are compared for fusing facial expression features. The proposed technique was experimented on JAFFE facial expression dataset with support vector machine (SVM). The experimental results show that proposed technique improved accuracy of GLTP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36(1), 259–275 (2003)
Tan, D., Nijholt, A.: Brain-computer interfaces and human-computer interaction. In: Tan, D., Nijholt, A. (eds.) Brain-Computer Interfaces, pp. 3–19. Springer, London (2010). https://doi.org/10.1007/978-1-84996-272-8_1
Zavaschi, T.H., Britto Jr., A.S., Oliveira, L.E., Koerich, A.L.: Fusion of feature sets and classifiers for facial expression recognition. Expert Syst. Appl. 40(2), 646–655 (2013)
Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)
Hjelmås, E.: Face detection: a survey. Comput. Vis. Image Underst. 83, 236–274 (2001)
Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 39–51 (1998)
Viola, P., Jones, M.: Robust real-time object detection. In: International Workshop on Statistical and Computational Theories of Vision Modeling, Learning, Computing, and Sampling (2001)
Li, S., Gu, L.: Real-time multi-view face detection, tracking, pose estimation, alignment, and recognition. In: IEEE Conference on Computer Vision and Pattern Recognition Demo Summary (2001)
Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 84–91 (1994)
Heisele, B., Serre, T., Pontil, M., Poggio, T.: Component-based face detection. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2001)
Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–38 (1998). https://www.analyticsvidhya.com/blog/2017/04/comparison-betweendeep-learning-machine-learning
Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)
Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)
You, H., Rumbe, G.: Comparative study of classification techniques on breast cancer FNA biopsy data. Int. J. Artif. Intell. Interact. Multimedia (2010)
Barrena, J.T., Valls, D.P.: Tumor Mass Detection through Gabor Filters and Supervised Pixel-Based Classification in Breast Cancer. University Rovira, Virgil (2014)
Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 532–538. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9
Mitchell, T.M.: Machine learning. In: WCB. McGraw-Hill, Boston (1997)
Vaidehi, S., Vasuhi, V., et al.: Person authentication using face detection. In: Proceedings of the World Congress on Engineering and Computer Science, pp. 222–224 (2008)
Reis, H.T., Andrew Collins, W., Berscheid, E.: The relationship context of human behavior and development. Psychol. Bull. 126(6), 844 (2000)
Suja, P., Thomas, S.M., Tripathi, S., Madan, V.K.: Emotion recognition from images under varying illumination conditions. In: Balas, V.E., Jain, L.C., Kovačević, B. (eds.) Soft Computing Applications. AISC, vol. 357, pp. 913–921. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-18416-6_72
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge. In: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), IEEE, Sydney (2013)
Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybernet. Part C Appl. Rev. 41(6), 765–781 (2011)
Jabid, T., Kabir, M.H., Chae, O.: Robust facial expression recognition based on local directional pattern. ETRI J. 32(5), 784–794 (2010)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)
Bashyal, S., Venayagamoorthy, G.K.: Recognition of facial expressions using Gabor wavelets and learning vector quantization. Eng. Appl. Artif. Intell. 21(7), 1056–1064 (2008)
Singh, S.K., Chauhan, D.S., Vatsa, M., Singh, R.: A robust skin color based face detection algorithm. Tamkang J. Sci. Eng. 6(4), 227–234 (2003)
Punitha, A., Kalaiselvigeetha, M.: Texture based emotion recognition from facial expression using support vector machine. Int. J. Comput. Appl. (0975–8887) 80(5) (2013)
Ahmed, F., Hossain, E.: Automated facial expression recognition using gradient-based ternary texture patterns. Chin. J. Eng. 2013, 1–8 (2013)
Yow, K.C., Cipolla, R.: Feature based human face detection. Image Vis. Comput. 15(9), 713–735 (1997)
Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 13(2), 415–425 (2002)
Scharr, H.: Optimal operators in digital image processing. Ph.D. thesis (2000)
Dhall, A., Goecke, R., Lucey, S., Gedeon, T.: Static facial expression analysis in tough conditions: data, evaluation protocol and benchmark. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2106–2112. IEEE, November 2011
Shrivastava, K., Manda, S., Chavan, P.S., Patil, T.B., Sawant-Patil, S.T.: Conceptual model for proficient automated attendance system based on face recognition and gender classification using haar-cascade, LBPH algorithm along with LDA model. Int. J. Appl. Eng. Res. 13(10), 8075–8080 (2018)
Padilla, R., Costa Filho, C.F.F., Costa, M.G.F.: Evaluation of Haar cascade classifiers designed for face detection. World Acad. Sci. Eng. Technol. 64, 362–365 (2012)
Ahmed, F., Kabir, M.H.: Directional ternary pattern (DTP) for facial expression recognition. In: 2012 IEEE International Conference on Consumer Electronics (ICCE). IEEE, Las Vegas (2012)
Holder, R.P., Tapamo, J.R.: Improved gradient local ternary patterns for facial expression recognition. EURASIP J. Image Video Process. 2017(1), 42 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Nour, N., Viriri, S. (2019). Facial Expression Recognition Using Directional Gradient Local Ternary Patterns. In: Chamchong, R., Wong, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2019. Lecture Notes in Computer Science(), vol 11909. Springer, Cham. https://doi.org/10.1007/978-3-030-33709-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-33709-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33708-7
Online ISBN: 978-3-030-33709-4
eBook Packages: Computer ScienceComputer Science (R0)