Nothing Special   »   [go: up one dir, main page]

Skip to main content

Facial Expression Recognition Using Directional Gradient Local Ternary Patterns

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11909))

  • 670 Accesses

Abstract

Extraction of human emotions from facial expression has attracted significant attention in computer vision community. There are several appearance based techniques like local binary patterns (LBP), local directional patterns (LDP), local ternary patterns (LTP) and gradient local ternary patterns (GLTP). Recently, many investigations have been done to improve these feature extraction techniques. Although GLTP has achieved an improvement in robustness to noise and illumination, it encodes image gradient in four directions and two orientations only. This paper proposes to improve GLTP to directional gradient local ternary patterns (DGLTP) by encoding image gradient on eight directions and four orientations. The eight directional Kirsch mask is used to encode the image gradient followed by dimensionality reduction using linear discriminant analysis (LDA) and AVG, MAX and MIN pooling techniques are compared for fusing facial expression features. The proposed technique was experimented on JAFFE facial expression dataset with support vector machine (SVM). The experimental results show that proposed technique improved accuracy of GLTP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36(1), 259–275 (2003)

    Article  MATH  Google Scholar 

  2. Tan, D., Nijholt, A.: Brain-computer interfaces and human-computer interaction. In: Tan, D., Nijholt, A. (eds.) Brain-Computer Interfaces, pp. 3–19. Springer, London (2010). https://doi.org/10.1007/978-1-84996-272-8_1

    Chapter  Google Scholar 

  3. Zavaschi, T.H., Britto Jr., A.S., Oliveira, L.E., Koerich, A.L.: Fusion of feature sets and classifiers for facial expression recognition. Expert Syst. Appl. 40(2), 646–655 (2013)

    Article  Google Scholar 

  4. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  5. Hjelmås, E.: Face detection: a survey. Comput. Vis. Image Underst. 83, 236–274 (2001)

    Article  MATH  Google Scholar 

  6. Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 39–51 (1998)

    Article  Google Scholar 

  7. Viola, P., Jones, M.: Robust real-time object detection. In: International Workshop on Statistical and Computational Theories of Vision Modeling, Learning, Computing, and Sampling (2001)

    Google Scholar 

  8. Li, S., Gu, L.: Real-time multi-view face detection, tracking, pose estimation, alignment, and recognition. In: IEEE Conference on Computer Vision and Pattern Recognition Demo Summary (2001)

    Google Scholar 

  9. Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 84–91 (1994)

    Google Scholar 

  10. Heisele, B., Serre, T., Pontil, M., Poggio, T.: Component-based face detection. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2001)

    Google Scholar 

  11. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–38 (1998). https://www.analyticsvidhya.com/blog/2017/04/comparison-betweendeep-learning-machine-learning

    Article  Google Scholar 

  12. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)

    Article  Google Scholar 

  13. Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)

    Article  Google Scholar 

  14. You, H., Rumbe, G.: Comparative study of classification techniques on breast cancer FNA biopsy data. Int. J. Artif. Intell. Interact. Multimedia (2010)

    Google Scholar 

  15. Barrena, J.T., Valls, D.P.: Tumor Mass Detection through Gabor Filters and Supervised Pixel-Based Classification in Breast Cancer. University Rovira, Virgil (2014)

    Google Scholar 

  16. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 532–538. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9

    Chapter  Google Scholar 

  17. Mitchell, T.M.: Machine learning. In: WCB. McGraw-Hill, Boston (1997)

    Google Scholar 

  18. Vaidehi, S., Vasuhi, V., et al.: Person authentication using face detection. In: Proceedings of the World Congress on Engineering and Computer Science, pp. 222–224 (2008)

    Google Scholar 

  19. Reis, H.T., Andrew Collins, W., Berscheid, E.: The relationship context of human behavior and development. Psychol. Bull. 126(6), 844 (2000)

    Article  Google Scholar 

  20. Suja, P., Thomas, S.M., Tripathi, S., Madan, V.K.: Emotion recognition from images under varying illumination conditions. In: Balas, V.E., Jain, L.C., Kovačević, B. (eds.) Soft Computing Applications. AISC, vol. 357, pp. 913–921. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-18416-6_72

    Chapter  Google Scholar 

  21. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge. In: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), IEEE, Sydney (2013)

    Google Scholar 

  22. Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybernet. Part C Appl. Rev. 41(6), 765–781 (2011)

    Article  Google Scholar 

  23. Jabid, T., Kabir, M.H., Chae, O.: Robust facial expression recognition based on local directional pattern. ETRI J. 32(5), 784–794 (2010)

    Article  Google Scholar 

  24. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bashyal, S., Venayagamoorthy, G.K.: Recognition of facial expressions using Gabor wavelets and learning vector quantization. Eng. Appl. Artif. Intell. 21(7), 1056–1064 (2008)

    Article  Google Scholar 

  26. Singh, S.K., Chauhan, D.S., Vatsa, M., Singh, R.: A robust skin color based face detection algorithm. Tamkang J. Sci. Eng. 6(4), 227–234 (2003)

    Google Scholar 

  27. Punitha, A., Kalaiselvigeetha, M.: Texture based emotion recognition from facial expression using support vector machine. Int. J. Comput. Appl. (0975–8887) 80(5) (2013)

    Article  Google Scholar 

  28. Ahmed, F., Hossain, E.: Automated facial expression recognition using gradient-based ternary texture patterns. Chin. J. Eng. 2013, 1–8 (2013)

    Article  Google Scholar 

  29. Yow, K.C., Cipolla, R.: Feature based human face detection. Image Vis. Comput. 15(9), 713–735 (1997)

    Article  Google Scholar 

  30. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  31. Scharr, H.: Optimal operators in digital image processing. Ph.D. thesis (2000)

    Google Scholar 

  32. Dhall, A., Goecke, R., Lucey, S., Gedeon, T.: Static facial expression analysis in tough conditions: data, evaluation protocol and benchmark. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2106–2112. IEEE, November 2011

    Google Scholar 

  33. Shrivastava, K., Manda, S., Chavan, P.S., Patil, T.B., Sawant-Patil, S.T.: Conceptual model for proficient automated attendance system based on face recognition and gender classification using haar-cascade, LBPH algorithm along with LDA model. Int. J. Appl. Eng. Res. 13(10), 8075–8080 (2018)

    Google Scholar 

  34. Padilla, R., Costa Filho, C.F.F., Costa, M.G.F.: Evaluation of Haar cascade classifiers designed for face detection. World Acad. Sci. Eng. Technol. 64, 362–365 (2012)

    Google Scholar 

  35. Ahmed, F., Kabir, M.H.: Directional ternary pattern (DTP) for facial expression recognition. In: 2012 IEEE International Conference on Consumer Electronics (ICCE). IEEE, Las Vegas (2012)

    Google Scholar 

  36. Holder, R.P., Tapamo, J.R.: Improved gradient local ternary patterns for facial expression recognition. EURASIP J. Image Video Process. 2017(1), 42 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nour, N., Viriri, S. (2019). Facial Expression Recognition Using Directional Gradient Local Ternary Patterns. In: Chamchong, R., Wong, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2019. Lecture Notes in Computer Science(), vol 11909. Springer, Cham. https://doi.org/10.1007/978-3-030-33709-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33709-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33708-7

  • Online ISBN: 978-3-030-33709-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics