Nothing Special   »   [go: up one dir, main page]

Skip to main content

Iterative Methods for Constructing Approximations to Optimal Coverings of Nonconvex Polygons

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1090))

  • 595 Accesses

Abstract

The paper proposes algorithms for the iterative construction of optimal coverings of nonconvex flat figures using sets of circles. These algorithms are based on the procedures of dividing the figure into zones of influence of points that serve as the centers of the initial coverings and finding the Chebyshev centers of these zones. To generate the initial array of points, we use stochastic procedures based on the synthesis of optimal hexagonal grids and random vectors.

The work was supported by the Decree no. 211 of the Government of the Russian Federation, contract no. 02.A03.21.0006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kazakov, A.L., Lebedev, P.D.: Algorithms for constructing optimal \(n\)-networks in metric spaces. Autom. Remote Control 78(7), 1290–1301 (2017)

    Article  MathSciNet  Google Scholar 

  2. Melissen, H.: Densest packings of eleven congruent circles in a circle. Geom. Dedicata. 50(1), 15–25 (1994)

    Article  MathSciNet  Google Scholar 

  3. Heppes, A., Melissen, H.: Covering a rectangle with equal circles. Period. Math. Hung. 34(1–2), 65–81 (1997)

    Article  MathSciNet  Google Scholar 

  4. Kazakov, A.L., Lempert, A.A., Bukharov, D.S.: On segmenting logistical zones for servicing continuously developed consumers. Autom. Remote Control 74(6), 968–977 (2013)

    Article  MathSciNet  Google Scholar 

  5. Desyatov, V.G.: Proektirovanie Sistem Ob’ectov Obshchestvennogo Kompleksa Promyshlennykh Predpriyatiy (Systems Design for Public Service Objects of Industrial Plants). MARKhI, Moscow (1989)

    Google Scholar 

  6. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1988)

    MATH  Google Scholar 

  7. Dem’yanov, V.F., Vasil’ev, L.V.: Nondifferentiable Optimization. Nauka, Moscow (1981); Springer, New York (1985)

    Google Scholar 

  8. Hausdorff, F.: Set Theory. Chelsea Publishing Co., New York (1962); Komkniga, Moscow (2006)

    Google Scholar 

  9. Garkavi, A.L.: On the existence of an optimal network and best diameter of a set in a Banach space. Usp. Mat. Nauk 15(2), 210–211 (1960). (in Russian)

    Google Scholar 

  10. Garkavi, A.L.: The best possible net and the best possible cross-section of a set in a normed space. Am. Math. Soc. Transl. II. Ser. 39, 111–132 (1964); transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 26(1), 87–106 (1962)

    Google Scholar 

  11. Mestetskiy, L.M.: Continuous Morphology of Binary Images. Figures, skeletons, Circular. Fizmatlit, Moscow (2009). (in Russian)

    Google Scholar 

  12. Brusov, V.S., Piyavskii, S.A.: A computational algorithm for optimally covering a plane region. USSR Comput. Math. Math. Phys. 11(2), 17–27 (1971)

    Article  Google Scholar 

  13. Lebedev, P.D., Uspenskii, A.A., Ushakov, V.N.: Algorithms of the best approximations of the flat sets by the union of circles. Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki (4), 88–99 (2013). (in Russian)

    Google Scholar 

  14. Ushakov, V.N., Lakhtin, A.S., Lebedev, P.D.: Optimization of the Hausdorff distance between sets in Euclidean space. Proc. Steklov Inst. Math. 291(1), S222–S238 (2015)

    Article  MathSciNet  Google Scholar 

  15. https://www2.stetson.edu/~efriedma/packing.html

  16. Ushakov, V.N., Lebedev, P.D.: Algorithms for the construction of an optimal cover for sets in three-simensional Euclidean space. Proc. Steklov Inst. Math. 293(1), S225–S237 (2016)

    Article  Google Scholar 

  17. Ushakov, V.N., Lebedev, P.D.: Algorithms of optimal set covering on the planar \(\mathbf{R}^2\). Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki 26(2), 258–270 (2016). (in Russian)

    Article  Google Scholar 

  18. Piyavskii, S.A.: On optimization of networks. Izv. Akad. Nauk SSSR Tekh. Kibern. (1), 68–80 (1968). (in Russian)

    Google Scholar 

  19. Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum. Springer, Berlin (1953); Fizmatlit, Moscow (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Lebedev or Vladimir Ushakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lebedev, P., Ushakov, V. (2019). Iterative Methods for Constructing Approximations to Optimal Coverings of Nonconvex Polygons. In: Bykadorov, I., Strusevich, V., Tchemisova, T. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Communications in Computer and Information Science, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-030-33394-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33394-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33393-5

  • Online ISBN: 978-3-030-33394-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics