Abstract
The possibility of applying a modernized method of latent semantic analysis (MLSA) to identify negative content in multimedia objects of web space is considered. A method for analyzing the dynamics of changes in the singular numbers of the original matrix with automatic selection of the range of used rank values is described. The positive dynamics of application of the MLSA method in different directions is shown, where semantic analysis of information is required.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bermudes, S.H.G., Kerimova, S.U.: O metode opredeleniy tekstovoi blizosti, osnovannom na semanticheskix klassax. Elect. nauchnii jurnal Inzhenernyj vestnik Dona 4(43) [About the method of determination of text closeness based on semantic classes. Electronic science journal Engineering herald of Dona 4(43) (2016). http://www.ivdon.ru/ru/magazine/archive/n4y2016/3832. (in Russian)
Bryant, J., Thompson, S.: Osnovi vozdeistviy SMI. Per. Eng. - Williams, M, p. 432 [Basics of the impact of the media, Translate from English - Williams, M, p. 432] (2004). (in Russian)
Jotsov, V.S., Sgurev, V.S., Yusupov, R.M., Khomonenko, A.D.: Ontologii dly razresheniy semanticheskix konfliktov. In: Trudy SPIIRAN, vol. 7, pp. 26–40 [The Ontology for the Semantic Conflicts Resolution. In: Proceedings of SPIIRAS, vol. 7, pp. 26–40] (2008). (in Russian)
Khomonenko, A.D., Logashev, S.V., Krasnov, S.A.: Avtomaticheskay rubrikaciy dokumentov s pomoch’y lsa algoritma nechetkogo vivoda Mamdami. In: Trudy SPIIRAN, vol. 44, pp. 5–19 [Automatic rubrication of documents using latent-semantic analysis and Mamdani fuzzy inference algorithm. In: Proceedings of SPIIRAS, vol. 44, pp. 5–19] (2015). (in Russian)
Khomonenko, A.D., Krasnov, S.A.: Primenenie metodov latentno-semanticheskogo analiza dly avtomaticheskoi rubrikacii dokumentov. In: Izvestiy Peterburgskogo universiteta putei soobwenii, vol. 31, pp. 124–132 [Application of methods of latent-semantic analysis for automatic document categorization. In: Proceedings of the Petersburg Transport University, vol. 31, pp. 124–132] (2012). (in Russian)
Krasnov, S.A., Ilatovsky, A.S., Khomonenko, A.D., Arsenyev, V.N.: Ocenka semanticheskoi blizosti dokumentov na osnove latentno-semanticheskogo analiza s avtomaticheskim viborom rangovix znachenii. In: Trudy SPIIRAN, vol. 54, pp. 185–204 [Estimation of semantic proximity of documents based on latent-semantic analysis with automatic selection of rank values. In: Proceedings of SPIIRAS, vol. 54, pp. 185–204] (2017). (in Russian)
Krasnov, S.A., Khomonenko, A.D., Dashonok, V.L.: Viyvlenie protivorechii blizkoi informacii na osnove latentno-semanticheskogo analiza. Sbornik nauchnix trudov SPbGPU, vol. 2, pp. 73–84 [Identification of contradictions in semantically close information based on latent-semantic analysis. Collected Scientific Works of the St. Petersburg State Polytechnical University, vol. 2, pp. 73–84] (2014). (in Russian)
Weissman, S., Ayhan, S., Bradley, J., Lin, J.: Identifying duplicate and contradictory information in Wikipedia. In: Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 57–60 (2015)
Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn., p. 664. Morgan Kaufmann (2011)
Acknowledgements
The study was carried out with the financial support of the Russian Foundation for Basic Research, project No. 18-29-22064\18.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Krasnov, S., Lokhvitckii, V., Dudkin, A. (2020). On the Applicability of the Modernized Method of Latent-Semantic Analysis to Identify Negative Content in Multimedia Objects. In: Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., Ivanovic, M. (eds) Intelligent Distributed Computing XIII. IDC 2019. Studies in Computational Intelligence, vol 868. Springer, Cham. https://doi.org/10.1007/978-3-030-32258-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-32258-8_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32257-1
Online ISBN: 978-3-030-32258-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)