Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hierarchical Model with Recurrent Convolutional Neural Networks for Sequential Sentence Classification

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11839))

Abstract

Hierarchical neural networks approaches have achieved outstanding results in the latest sequential sentence classification research work. However, it is challenging for the model to consider both the local invariant features and word dependent information of the sentence. In this work, we concentrate on the sentence representation and context modeling components that influence the effects of the hierarchical architecture. We present a new approach called SR-RCNN to generate more precise sentence encoding which leverage complementary strength of bi-directional recurrent neural network and text convolutional neural network to capture contextual and literal relevance information. Afterwards, statement-level encoding vectors are modeled to capture the intrinsic relations within surrounding sentences. In addition, we explore the applicability of attention mechanisms and conditional random fields to the task. Our model advances sequential sentence classification in medical abstracts to new state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The dataset is downloaded from: https://github.com/Franck-Dernoncourt/pubmed-rct.

  2. 2.

    https://www.kaggle.com/c/alta-nicta-challenge2.

  3. 3.

    The word vectors are downloaded from: http://evexdb.org/pmresources/vec-space-models/.

References

  1. Amini, I., Martinez, D., Molla, D., et al.: Overview of the ALTA 2012 Shared Task (2012)

    Google Scholar 

  2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

    MATH  Google Scholar 

  3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  4. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

    MATH  Google Scholar 

  6. Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional networks for text classification. arXiv preprint arXiv:1606.01781 (2016)

  7. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8609–8613. IEEE (2013)

    Google Scholar 

  8. Dernoncourt, F., Lee, J.Y.: Pubmed 200k rct: a dataset for sequential sentence classification in medical abstracts. arXiv preprint arXiv:1710.06071 (2017)

  9. Dernoncourt, F., Lee, J.Y., Szolovits, P.: Neural networks for joint sentence classification in medical paper abstracts. arXiv preprint arXiv:1612.05251 (2016)

  10. Hachey, B., Grover, C.: Sequence modelling for sentence classification in a legal summarisation system. In: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 292–296. ACM (2005)

    Google Scholar 

  11. Hassanzadeh, H., Groza, T., Hunter, J.: Identifying scientific artefacts in biomedical literature: the evidence based medicine use case. J. Biomed. Inform. 49, 159–170 (2014)

    Article  Google Scholar 

  12. Hirohata, K., Okazaki, N., Ananiadou, S., Ishizuka, M.: Identifying sections in scientific abstracts using conditional random fields. In: Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-I (2008)

    Google Scholar 

  13. Huang, K.C., Chiang, I.J., Xiao, F., Liao, C.C., Liu, C.C.H., Wong, J.M.: Pico element detection in medical text without metadata: are first sentences enough? J. Biomed. Inform. 46(5), 940–946 (2013)

    Article  Google Scholar 

  14. Jagannatha, A.N., Yu, H.: Structured prediction models for RNN based sequence labeling in clinical text. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Conference on Empirical Methods in Natural Language Processing, vol. 2016, p. 856. NIH Public Access (2016)

    Google Scholar 

  15. Jin, D., Szolovits, P.: Hierarchical neural networks for sequential sentence classification in medical scientific abstracts. arXiv preprint arXiv:1808.06161 (2018)

  16. Kim, S.N., Martinez, D., Cavedon, L., Yencken, L.: Automatic classification of sentences to support evidence based medicine. In: BMC Bioinformatics, vol. 12, p. S5. BioMed Central (2011)

    Article  Google Scholar 

  17. Kim, T., Yang, J.: Abstractive text classification using sequence-to-convolution neural networks. arXiv preprint arXiv:1805.07745 (2018)

  18. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of 18th International Conference on Machine Learning, pp. 282–289 (2001)

    Google Scholar 

  21. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: Twenty-ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  22. Lee, J.Y., Dernoncourt, F.: Sequential short-text classification with recurrent and convolutional neural networks. arXiv preprint arXiv:1603.03827 (2016)

  23. Lin, J., Karakos, D., Demner-Fushman, D., Khudanpur, S.: Generative content models for structural analysis of medical abstracts. In: Proceedings of the HLT-NAACL BioNLP Workshop on Linking Natural Language and Biology, LNLBioNLP 2006. pp. 65–72. Association for Computational Linguistics, Stroudsburg (2006)

    Google Scholar 

  24. Liu, L., et al.: Empower sequence labeling with task-aware neural language model. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  26. Mirończuk, M.M., Protasiewicz, J.: A recent overview of the state-of-the-art elements of text classification. Expert Syst. Appl. 106, 36–54 (2018)

    Article  Google Scholar 

  27. Moen, S., Ananiadou, T.S.S.: Distributional semantics resources for biomedical text processing. In: Proceedings of LBM, pp. 39–44 (2013)

    Google Scholar 

  28. Moriya, S., Shibata, C.: Transfer learning method for very deep CNN for text classification and methods for its evaluation. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 153–158. IEEE (2018)

    Google Scholar 

  29. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  30. Reimers, N., Gurevych, I.: Optimal hyperparameters for deep lstm-networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799 (2017)

  31. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  32. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

    Article  Google Scholar 

  33. Yamamoto, Y., Takagi, T.: A sentence classification system for multi biomedical literature summarization. In: 21st International Conference on Data Engineering Workshops (ICDEW 2005), pp. 1163–1163, April 2005

    Google Scholar 

  34. Yin, W., Kann, K., Yu, M., Schuetze, H.: Comparative study of CNN and RNN for natural language processing (2017). arXiv preprint arXiv:1702.01923 (2017)

  35. Zhou, Y., Xu, B., Xu, J., Yang, L., Li, C.: Compositional recurrent neural networks for Chinese short text classification. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 137–144. IEEE (2016)

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by NSFC under Grant No. U1836107 and No. 61572158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunming Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, X., Zhang, B., Ye, Y., Liu, Z. (2019). A Hierarchical Model with Recurrent Convolutional Neural Networks for Sequential Sentence Classification. In: Tang, J., Kan, MY., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2019. Lecture Notes in Computer Science(), vol 11839. Springer, Cham. https://doi.org/10.1007/978-3-030-32236-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32236-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32235-9

  • Online ISBN: 978-3-030-32236-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics