Abstract
Named entity recognition (NER) is a foundational technology for information extraction. This paper presents a flexible NER framework (https://github.com/bke-casia/FLEXNER) compatible with different languages and domains. Inspired by the idea of distant supervision (DS), this paper enhances the representation by increasing the entity-context diversity without relying on external resources. We choose different layer stacks and sub-network combinations to construct the bilateral networks. This strategy can generally improve model performance on different datasets. We conduct experiments on five languages, such as English, German, Spanish, Dutch and Chinese, and biomedical fields, such as identifying the chemicals and gene/protein terms from scientific works. Experimental results demonstrate the good performance of this framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. arXiv preprint arXiv:1511.08308 (2015)
Clark, K., Luong, M.T., Manning, C.D., Le, Q.V.: Semi-supervised sequence modeling with cross-view training. arXiv preprint arXiv:1809.08370 (2018)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
DeVries, T., Taylor, G.W.: Dataset augmentation in feature space. arXiv preprint arXiv:1702.05538 (2017)
Habibi, M., Weber, L., Neves, M., Wiegandt, D.L., Leser, U.: Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics 33(14), i37–i48 (2017)
Hu, W., Chan, Z., Liu, B., Zhao, D., Ma, J., Yan, R.: GSN: a graph-structured network for multi-party dialogues. In: Proceedings of IJCAI 2019 (2019)
Hu, W., et al.: Overcoming catastrophic forgetting for continual learning via model adaptation. In: Proceedings of ICLR 2019 (2019)
Hu, W., Zhang, J., Zheng, N.: Different contexts lead to different word embeddings. In: Proceedings of COLING 2016 (2016)
Jessop, D.M., Adams, S.E., Willighagen, E.L., Hawizy, L., Murray-Rust, P.: OSCAR4: a flexible architecture for chemical text-mining. J. Cheminformatics 3(1), 41 (2011)
Jiang, L., Meng, D., Yu, S.I., Lan, Z., Shan, S., Hauptmann, A.: Self-paced learning with diversity. In: Proceedings of NeuIPS 2014 (2014)
Kaewphan, S., Van Landeghem, S., Ohta, T., Van de Peer, Y., Ginter, F., Pyysalo, S.: Cell line name recognition in support of the identification of synthetic lethality in cancer from text. Bioinformatics 32(2), 276–282 (2015)
Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data (2001)
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)
Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. arXiv preprint arXiv:1603.01354 (2016)
Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of ACL 2009 (2009)
Ni, J., Florian, R.: Improving multilingual named entity recognition with Wikipedia entity type mapping. arXiv preprint arXiv:1707.02459 (2017)
Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)
Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of CoNLL 2009, pp. 147–155 (2009)
Rocktäschel, T., Weidlich, M., Leser, U.: ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics 28(12), 1633–1640 (2012)
Saito, I., et al.: Improving neural text normalization with data augmentation at character-and morphological levels. In: Proceedings of IJCNLP 2017 (2017)
Sang, E.F.T.K.: Introduction to the CoNLL-2002 shared task: language-independent named entity recognition. In: Proceedings of CoNLL 2002 (2002)
Shi, B., Zhang, Z., Sun, L., Han, X.: A probabilistic co-bootstrapping method for entity set expansion. In: Proceedings of COLING 2014, pp. 2280–2290 (2014)
Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of HLT-NAACL 2003, pp. 142–147 (2003)
Xu, J., Wen, J., Sun, X., Su, Q.: A discourse-level named entity recognition and relation extraction dataset for Chinese literature text. arXiv preprint arXiv:1711.07010 (2017)
Yang, J., Liang, S., Zhang, Y.: Design challenges and misconceptions in neural sequence labeling. In: Proceedings COLING 2018 (2018)
Yang, Z., Salakhutdinov, R., Cohen, W.W.: Transfer learning for sequence tagging with hierarchical recurrent networks. arXiv preprint arXiv:1703.06345 (2017)
Zhou, L., Hu, W., Zhang, J., Zong, C.: Neural system combination for machine translation. arXiv preprint arXiv:1704.06393 (2017)
Zhu, H., Zeng, Y., Wang, D., Xu, B.: Brain knowledge graph analysis based on complex network theory. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS (LNAI), vol. 9919, pp. 211–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47103-7_21
Acknowledgement
This study is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB32070100).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhu, H., Hu, W., Zeng, Y. (2019). FlexNER: A Flexible LSTM-CNN Stack Framework for Named Entity Recognition. In: Tang, J., Kan, MY., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2019. Lecture Notes in Computer Science(), vol 11839. Springer, Cham. https://doi.org/10.1007/978-3-030-32236-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-32236-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32235-9
Online ISBN: 978-3-030-32236-6
eBook Packages: Computer ScienceComputer Science (R0)