Nothing Special   »   [go: up one dir, main page]

Skip to main content

FlexNER: A Flexible LSTM-CNN Stack Framework for Named Entity Recognition

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11839))

Abstract

Named entity recognition (NER) is a foundational technology for information extraction. This paper presents a flexible NER framework (https://github.com/bke-casia/FLEXNER) compatible with different languages and domains. Inspired by the idea of distant supervision (DS), this paper enhances the representation by increasing the entity-context diversity without relying on external resources. We choose different layer stacks and sub-network combinations to construct the bilateral networks. This strategy can generally improve model performance on different datasets. We conduct experiments on five languages, such as English, German, Spanish, Dutch and Chinese, and biomedical fields, such as identifying the chemicals and gene/protein terms from scientific works. Experimental results demonstrate the good performance of this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/jiesutd/NCRFpp.

  2. 2.

    https://github.com/bke-casia/FLEXNER/blob/master/pic/appendix.pdf.

References

  1. Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. arXiv preprint arXiv:1511.08308 (2015)

  2. Clark, K., Luong, M.T., Manning, C.D., Le, Q.V.: Semi-supervised sequence modeling with cross-view training. arXiv preprint arXiv:1809.08370 (2018)

  3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. DeVries, T., Taylor, G.W.: Dataset augmentation in feature space. arXiv preprint arXiv:1702.05538 (2017)

  6. Habibi, M., Weber, L., Neves, M., Wiegandt, D.L., Leser, U.: Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics 33(14), i37–i48 (2017)

    Article  Google Scholar 

  7. Hu, W., Chan, Z., Liu, B., Zhao, D., Ma, J., Yan, R.: GSN: a graph-structured network for multi-party dialogues. In: Proceedings of IJCAI 2019 (2019)

    Google Scholar 

  8. Hu, W., et al.: Overcoming catastrophic forgetting for continual learning via model adaptation. In: Proceedings of ICLR 2019 (2019)

    Google Scholar 

  9. Hu, W., Zhang, J., Zheng, N.: Different contexts lead to different word embeddings. In: Proceedings of COLING 2016 (2016)

    Google Scholar 

  10. Jessop, D.M., Adams, S.E., Willighagen, E.L., Hawizy, L., Murray-Rust, P.: OSCAR4: a flexible architecture for chemical text-mining. J. Cheminformatics 3(1), 41 (2011)

    Article  Google Scholar 

  11. Jiang, L., Meng, D., Yu, S.I., Lan, Z., Shan, S., Hauptmann, A.: Self-paced learning with diversity. In: Proceedings of NeuIPS 2014 (2014)

    Google Scholar 

  12. Kaewphan, S., Van Landeghem, S., Ohta, T., Van de Peer, Y., Ginter, F., Pyysalo, S.: Cell line name recognition in support of the identification of synthetic lethality in cancer from text. Bioinformatics 32(2), 276–282 (2015)

    Google Scholar 

  13. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data (2001)

    Google Scholar 

  14. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  15. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. arXiv preprint arXiv:1603.01354 (2016)

  16. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of ACL 2009 (2009)

    Google Scholar 

  17. Ni, J., Florian, R.: Improving multilingual named entity recognition with Wikipedia entity type mapping. arXiv preprint arXiv:1707.02459 (2017)

  18. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

  19. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of CoNLL 2009, pp. 147–155 (2009)

    Google Scholar 

  20. Rocktäschel, T., Weidlich, M., Leser, U.: ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics 28(12), 1633–1640 (2012)

    Article  Google Scholar 

  21. Saito, I., et al.: Improving neural text normalization with data augmentation at character-and morphological levels. In: Proceedings of IJCNLP 2017 (2017)

    Google Scholar 

  22. Sang, E.F.T.K.: Introduction to the CoNLL-2002 shared task: language-independent named entity recognition. In: Proceedings of CoNLL 2002 (2002)

    Google Scholar 

  23. Shi, B., Zhang, Z., Sun, L., Han, X.: A probabilistic co-bootstrapping method for entity set expansion. In: Proceedings of COLING 2014, pp. 2280–2290 (2014)

    Google Scholar 

  24. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of HLT-NAACL 2003, pp. 142–147 (2003)

    Google Scholar 

  25. Xu, J., Wen, J., Sun, X., Su, Q.: A discourse-level named entity recognition and relation extraction dataset for Chinese literature text. arXiv preprint arXiv:1711.07010 (2017)

  26. Yang, J., Liang, S., Zhang, Y.: Design challenges and misconceptions in neural sequence labeling. In: Proceedings COLING 2018 (2018)

    Google Scholar 

  27. Yang, Z., Salakhutdinov, R., Cohen, W.W.: Transfer learning for sequence tagging with hierarchical recurrent networks. arXiv preprint arXiv:1703.06345 (2017)

  28. Zhou, L., Hu, W., Zhang, J., Zong, C.: Neural system combination for machine translation. arXiv preprint arXiv:1704.06393 (2017)

  29. Zhu, H., Zeng, Y., Wang, D., Xu, B.: Brain knowledge graph analysis based on complex network theory. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS (LNAI), vol. 9919, pp. 211–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47103-7_21

    Chapter  Google Scholar 

Download references

Acknowledgement

This study is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB32070100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zeng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 237 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, H., Hu, W., Zeng, Y. (2019). FlexNER: A Flexible LSTM-CNN Stack Framework for Named Entity Recognition. In: Tang, J., Kan, MY., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2019. Lecture Notes in Computer Science(), vol 11839. Springer, Cham. https://doi.org/10.1007/978-3-030-32236-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32236-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32235-9

  • Online ISBN: 978-3-030-32236-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics