Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparative Study of Evolutionary Algorithms for Protein-Ligand Docking Problem on the AutoDock

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2019)

Abstract

AutoDock is a widely used simulation platform for Protein-ligand docking which is a simulator to provide the field of computer-aided drug design (CADD) with conveniences. Protein-ligand docking establishes docking models and study interaction between the receptor and the ligand, as a part of the most important means in drug development. Protein-ligand docking problem is of great significance to design more effective and ideal drugs. The experiments are simulated on AutoDock with six weighted algorithms such as Lamarckian genetic algorithm, a genetic algorithm with crossover elitist preservation, artificial bee colony algorithm, ABC_DE_based hybrid algorithm, fireworks algorithm, and monarch butterfly optimization. The diversity of search function constructed by different evolutionary algorithms for separate receptors and ligands is applied and analyzed. Performances of distinct search functions are given according to convergence speed, energy value, hypothesis test and so on. This can be of great benefit to future protein-ligand docking progress. Based on the work, appearances are found that performances of the same algorithm vary with different problems. No universal algorithms are having the best performance for diverse problems. Therefore, it is important how to choose an appropriate approach according to characteristics of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brooijmans, N., Kuntz, I.D.: Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32(1), 335–373 (2003)

    Article  Google Scholar 

  2. Huang, S.Y., Zou, X.: Advances and challenges in Protein-ligand docking. Int. J. Mol. Sci. 11(8), 3016–3034 (2010)

    Article  Google Scholar 

  3. Jug, G., Anderluh, M., Tomašič, T.: Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN. J. Mol. Model. 21(6), 1–12 (2015)

    Article  Google Scholar 

  4. Verlinde, C.L., Hol, W.G.: Structure-based drug design: progress, results and challenges. Structure 2(7), 577–587 (1994)

    Article  Google Scholar 

  5. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: Software news and update a semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 10, 1145–1152 (2007)

    Article  Google Scholar 

  6. Jain, A.N.: Scoring functions for protein-ligand docking. Curr. Protein Pept. Sci. 7(5), 407–420 (2006)

    Article  Google Scholar 

  7. Feinstein, W.P., Brylinski, M.: Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Cheminform 7, 18 (2015)

    Article  Google Scholar 

  8. Zeng, X.X., Liao, Y.L., Liu, Y.S., Zou, Q.: Prediction and validation of disease genes using HeteSim Scores. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(03), 687–695 (2017)

    Article  Google Scholar 

  9. Cao, T., Li, T.: A combination of numeric genetic algorithm and tabu search can be applied to molecular docking. Comput. Biol. Chem. 28(4), 303–312 (2004)

    Article  MathSciNet  Google Scholar 

  10. Morris, G.M., et al.: Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. Comput. Chem. J. Comput. Chem 19(28), 1639–1662 (1998)

    Article  Google Scholar 

  11. Guan, B., Zhang, C., Ning, J.: EDGA: a population evolution direction-guided genetic algorithm for protein-ligand docking. J. Comput. Biol. 23(7), 585–596 (2016)

    Article  Google Scholar 

  12. Fuhrmann, J., Rurainsk, A., Lenhof, H.P., Neumann, D.: A new Lamarckian genetic algorithm for flexible ligang-receptor docking. J. Comput. Chem. 31, 1911–1918 (2010)

    Google Scholar 

  13. Guan, B., Zhang, C., Ning, J.: Genetic algorithm with a crossover elitist preservation mechanism for protein–ligand docking. Amb. Express 7(1), 174 (2017)

    Article  Google Scholar 

  14. Uehara, S., Fujimoto, K.J., Tanaka, S.: Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli. Phys. Chem. Chem. Phys. 17(25), 16412–16417 (2015)

    Article  Google Scholar 

  15. Guan, B., Zhang, C., Zhao, Y.: An efficient ABC_DE_Based hybrid algorithm for protein-ligand docking. Int. J. Mol. Sci. 19(4), 1181 (2018)

    Article  Google Scholar 

  16. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 1(1), 1–12 (2018)

    Article  Google Scholar 

  17. Jiang, D., Huo, L., Lv, Z., et al.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. (99), 1–15 (2018)

    Google Scholar 

  18. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  19. Jiang, D., Xu, Z., Li, W., et al.: Topology control-based collaborative multicast routing algorithm with minimum energy consumption. Int. J. Commun. Syst. 30(1), 1–18 (2017)

    Article  Google Scholar 

  20. Jiang, D., Xu, Z., Li, W., et al.: An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks. J. Commun. Netw. 18(5), 713–724 (2016)

    Article  Google Scholar 

  21. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44

    Chapter  Google Scholar 

  22. Wang, G.G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31, 1–20 (2015)

    Google Scholar 

  23. Morris, G.M., et al.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Softw. News Updates 30(16), 2786–2791 (2009)

    Google Scholar 

  24. Hu, X., Balaz, S., Shelver, W.H.: A practical approach to docking of zinc metalloproteinase inhibitors. J. Mol. Graph. Model. 22(4), 293–307 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This study is funded by Shenyang Dongda Emerging Industrial Technology Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Zhang, C., Zhao, Q., Zhang, B., Sun, W. (2019). Comparative Study of Evolutionary Algorithms for Protein-Ligand Docking Problem on the AutoDock. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-030-32216-8_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32216-8_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32215-1

  • Online ISBN: 978-3-030-32216-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics