Abstract
The article aims to show the possible applications of predictive algorithms in the field of social sciences. Due to the high diversity of data obtained in research, there is a need to look for solutions that allows better exploratory data analysis. The article uses the example of Problematic Internet Use, which is a phenomenon related to excessive use of the network and the negative effects associated with it. This phenomenon is the subject of psychological research, in the field of variables that can be considered as predictors, elements of construct image, or the possibility of predicting its development. The purpose of this article is to propose a method allowing to build a pre-evidential model of the occurrence of the problematic Internet Use using the possessed data, and to determine the correlations between variables constituting this phenomenon.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbaugh, W.A., Fithen, W.L., McHugh, J.: Windows of vulnerability: a case study analysis. Computer 33(12), 52–59 (2000)
Caplan, S.E.: Problematic internet use and psychosocial well-being: development of a theory-based cognitive-behavioral measurement instrument. Comput. Hum. Behav. 18(5), 553–575 (2002)
Caplan, S.E.: Preference for online social interaction: a theory of problematic internet use and psychosocial well-being. Commun. Res. 30(6), 625–648 (2003)
Cohen, S., Mermelstein, R., Kamarck, T., Hoberman, H.M.: Measuring the functional components of social support. In: Social support: Theory, research and applications, pp. 73–94. Springer (1985)
Davis, R.A.: A cognitive-behavioral model of pathological internet use. Comput. Hum. Behav. 17(2), 187–195 (2001)
Gałuszka, A., Probierz, E.: Problematyczne używanie internetu a cechy osobowości i wczesne nieadaptacyjne schematy użytkowników sieci. Annales Universitatis Paedagogicae Cracoviensis. Studia de Cultura 1(10 (4)” Cyberpsychologia. Nowe strategie badania mediów i ich użytkowników”), 40–50 (2018)
Gosling, S.D., Rentfrow, P.J., Swann Jr., W.B.: A very brief measure of the big-five personality domains. J. Res. Pers. 37(6), 504–528 (2003)
Hillard, D., Purpura, S., Wilkerson, J.: Computer-assisted topic classification for mixed-methods social science research. J. Inf. Technol. Polit. 4(4), 31–46 (2008)
Kim, K.S., Kim, K.H.: A prediction model for internet game addiction in adolescents: using a decision tree analysis. J. Korean Acad. Nurs. 40(3), 378–388 (2010)
Lazega, E., Van Duijn, M.: Position in formal structure, personal characteristics and choices of advisors in a law firm: a logistic regression model for dyadic network data. Soc. Netw. 19(4), 375–397 (1997)
Malarvizhi, R., Thanamani, A.S.: K-nearest neighbor in missing data imputation. Int. J. Eng. Res. Dev. 5(1), 5–7 (2012)
Oei, T.P., Baranoff, J.: Young schema questionnaire: review of psychometric and measurement issues. Aust. J. Psychol. 59(2), 78–86 (2007)
Pontes, H.M., Caplan, S.E., Griffiths, M.D.: Psychometric validation of the generalized problematic internet use scale 2 in a portuguese sample. Comput. Hum. Behav. 63, 823–833 (2016)
Probierz, E.: Problematyczne Używanie Internetu a cechy osobowoóci, wczesne nieadaptacyjne schematy, wsparcie społeczne i samoocena użytkowników sieci. (Problematic Internet Use in the context of personality features, early maladaptive schemas, social support and self-esteem of network users.). Master’s thesis, Univeristy of Silesia (2018)
Robins, R.W., Hendin, H.M., Trzesniewski, K.H.: Measuring global self-esteem: construct validation of a single-item measure and the rosenberg self-esteem scale. Pers. Soc. Psychol. Bull. 27(2), 151–161 (2001)
Acknowledgements
For first and second authors co-financed by the European Union through the European Social Fund (grant POWR.03.02.00-00-I029).
This work has been partially supported by Institute of Automatic Control BK Grant 02/010/BK18/0102 (BK/200/Rau1/2018) in the year 2019. The analysis has been performed with the use of IT infrastructure of GeCONiI Upper Silesian Centre for Computational Science and Engineering (NCBiR grant no POIG.02.03.01-24-099/13).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Probierz, E., Sikora, W., Gałuszka, A., Gałuszka, A. (2020). Predictive Algorithms in Social Sciences – Problematic Internet Use Example. In: Gruca, A., Czachórski, T., Deorowicz, S., Harężlak, K., Piotrowska, A. (eds) Man-Machine Interactions 6. ICMMI 2019. Advances in Intelligent Systems and Computing, vol 1061 . Springer, Cham. https://doi.org/10.1007/978-3-030-31964-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-31964-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31963-2
Online ISBN: 978-3-030-31964-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)