Nothing Special   »   [go: up one dir, main page]

Skip to main content

Face Super-Resolution via Discriminative-Attributes

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11858))

Included in the following conference series:

  • 2507 Accesses

Abstract

The limited resolution of cameras and the wide field of the video surveillance systems lead to low quality captured facial images and difficult to identify. Face super-resolution methods are proposed to enhance the resolution of facial images. However, it remains a challenging issue to restore discriminative features to identify a specific person in surveillance videos. An algorithm that helps face super-resolution and recognition with the aid of discriminative-attributes is proposed in this paper. We introduce discriminative-attributes for face recognition to recover discriminative features in the reconstructed facial images. Attributes with more discriminative power are selected to input the network together with the low-resolution face image. The experimental results of the LFW-a benchmark test show that our method achieves promising results in both subjective visual quality and face recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dong, C., Loy, C.C., He, K., et al.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 259–307 (2016)

    Article  Google Scholar 

  2. Zhang, K., Zuo, W., Chen, Y., et al.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  3. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  4. Ledig, C., Theis, L., Huszar, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Computer Vision and Pattern Recognition, pp. 105–114 (2017)

    Google Scholar 

  5. Zhang, H., Xu, T., Li, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5908–5916 (2016)

    Google Scholar 

  6. Chen, Y., Tai, Y., Liu, X., et al.: FSRNet: end-to-end learning face super-resolution with facial priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2492–2501 (2018)

    Google Scholar 

  7. Yu, X., Fernando, B., Hartley, R., et al.: Super-resolving very low-resolution face images with supplementary attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 908–917 (2018)

    Google Scholar 

  8. Lee, C.H., Zhang, K., Lee, H.C., et al.: Attribute augmented convolutional neural network for face hallucination. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition workshops, pp. 721–729 (2018)

    Google Scholar 

  9. Liu, W., Wen, Y., Yu, Z., et al.: SphereFace: deep hypersphere embedding for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6738–6746 (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., et al.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  13. Ding, H., Zhou, H., Zhou, S.K., et al.: A deep cascade network for unaligned face attribute classification (2017)

    Google Scholar 

  14. Bing, X., Naiyan, W., Tianqi, C., Mu, L.: Empirical evaluation of rectified activations in convolutional network. arXiv:1505.00853 (2015)

  15. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Liu, Z., Luo, P., Wang, X., et al.: Deep learning face attributes in the wild. In: IEEE International Conference on Computer Vision, pp. 3730–3738 (2016)

    Google Scholar 

  18. Wolf, L., Hassner, T., Taigman, Y.: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1978–1990 (2011)

    Article  Google Scholar 

  19. Zhang, K., Zhang, Z., Li, Z., et al.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  20. Zhang, K., et al.: Super-identity convolutional neural network for face hallucination. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 196–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_12

    Chapter  Google Scholar 

Download references

Acknowledgments

The work in this paper is supported by the National Natural Science Foundation of China (No. 61471013 and No. 61701011), the Beijing Municipal Natural Science Foundation Cooperation Beijing Education Committee (KZ201810005002, KZ201910005007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, N., Li, X., Li, J., Zhuo, L. (2019). Face Super-Resolution via Discriminative-Attributes. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31723-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31722-5

  • Online ISBN: 978-3-030-31723-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics