Abstract
To address the problem of loss of time series information when taking the mean value of the average signal from EEG data, a variance index is used to reconstruct the time series, and a multi-scale entropy method based on a non-uniform time window is proposed. The effectiveness of the method is verified in two data sets. The results show that the use of the variance of multi-scale time series can extract more effective features compared with average indicators. Compared with coarse-grained methods, the fine-grained method has better accuracy, but its time complexity is also higher. The uniform time window method has not only better accuracy, but also reduced time complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zou, X., Lei, M.: Model recognition of surface EMG signals based on multi-scale maximum Lyapunov exponents. Chin. J. Biomed. Eng. 31(1), 7–12 (2012)
Zhao, L., Liang, Z., Wu, W., et al.: Analysis of EEG-related dimension changes in patients with epilepsy after biofeedback training. Chin. J. Biomed. Eng. 29(1), 71–76 (2010)
Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)
Richman, J.S.: Sample entropy statistics and testing for order in complex physiological signals. Commun. Stat. - Theory Methods 36(5), 1005–1019 (2007)
Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)
Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005)
Heisz, J.J., Shedden, J.M., McIntosh, A.R.: Relating brain signal variability to knowledge representation. Neuroimage 63(3), 1384–1392 (2012)
da Silva, F.L.: EEG and MEG: relevance to neuroscience. Neuron 80(5), 1112–1128 (2013)
Wu, S.D., Wu, C.W., Lee, K.Y., et al.: Modified multiscale entropy for short-term time series analysis. Physica A 392(23), 5865–5873 (2013)
Amoud, H., Snoussi, H., Hewson, D., et al.: Intrinsic mode entropy for nonlinear discriminant analysis. IEEE Signal Process. Lett. 14(5), 297–300 (2007)
Labate, D., Foresta, F.L., Inuso, G., et al.: Multiscale entropy analysis of artifactual EEG recordings. Front. Artif. Intell. Appl. 234, 170–177 (2011)
Hu, M., Liang, H.: Adaptive multiscale entropy analysis of multivariate neural data. IEEE Trans. Biomed. Eng. 59(1), 12–15 (2012)
Hu, M., Liang, H.: Variance entropy: a method for characterizing perceptual awareness of visual stimulus. Appl. Comput. Intell. Soft Comput. 2012, 1 (2012)
Costa, M.D., Goldberger, A.L.: Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series. Entropy 17(3), 1197–1203 (2015)
Yin, Y., Shang, P., Feng, G.: Modified multiscale cross-sample entropy for complex time series. Appl. Math. Comput. 289, 98–110 (2016)
Wu, Y., Shang, P., Li, Y.: Multiscale sample entropy and cross-sample entropy based on symbolic representation and similarity of stock markets. Commun. Nonlinear Sci. Numer. Simul. 56, 49–61 (2018)
Lehmann, D., Ozaki, H., Pal, I.: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr. Clin. Neurophysiol. 67(3), 271–288 (1987)
Liu, Z., Huang, J., Feng, X.: Construction of multi-scale depth convolution neural network behavior recognition model. Editorial Office Opt. Precis. Eng. 25(3), 799–805 (2017)
Yang, Q., Li, S., Zhang, Y., et al.: Time-frequency analysis algorithm for multi-particle motion segmentation. J. Comput.-Aided Des. Comput. Graph. 29(12) (2017)
Pincus, S.M.: Approximate entropy (ApEn) as a complexity measure. Chaos 5, 110–117 (1995)
Kosko, B.: Fuzzy entropy and conditioning. Inf. Sci. 40(2), 165–174 (1986)
Wang, J., Ning, X., Li, J., et al.: ECG multi-scale entropy analysis. In: Cutting-Edge Science Conference Papers (2004)
Ebrahimi, N., Maasoumi, E., Soofi, E.S.: Ordering univariate distributions by entropy and variance. J. Econometrics 90(2), 317–336 (1999)
Okazaki, R., Takahashi, T., Ueno, K., et al.: Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: a multiscale entropy approach. Front. Hum. Neurosci. 9, 106 (2015)
Humeau-Heurtier, A., Mahé, G., Abraham, P.: Modified multiscale sample entropy computation of laser speckle contrast images and comparison with the original multiscale entropy algorithm. J. Biomed. Opt. 20(12), 121302 (2015)
Diao, L., Wang, L., Lu, Y., et al.: Method of calculating text similarity threshold. J. Tsinghua Univ. (Sci. Technol.) 43(1), 108–111 (2003)
Bai, D., Qiu, T., Li, X.: Sample entropy and its application in EEG seizure detection. J. Biomed. Eng. 24(1), 200–205 (2007)
Iasemidis, L.D., Sackellares, J.C., Zaveri, H.P., Williams, W.J.: Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr. 2(3), 187–201 (1990)
Acknowledgments
This study was supported by research grants from the National Natural Science Foundation of China (61472270, 61672374, 61741212), Natural Science Foundation of Shanxi Province (201601D021073, 201801D121135), and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2016139).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Deng, H., Guo, J., Yang, X., Hou, J., Liu, H., Li, H. (2019). Multiscale Entropy Analysis of EEG Based on Non-uniform Time. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-31723-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31722-5
Online ISBN: 978-3-030-31723-2
eBook Packages: Computer ScienceComputer Science (R0)