Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-scale Convolutional Neural Network Based on 3D Context Fusion for Lesion Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11857))

Included in the following conference series:

  • 2629 Accesses

Abstract

Lesion detection is an essential technique in medical diagnostic systems. Since there are great differences in intensity and appearance within a same lesion category, lesion detection from computed tomography (CT) scans is still a challenging task. Sufficiently using 3D context information become the research hotpot in lesion detection area, since algorithms can benefit from geometry and texture of lesions. Motivated by this trend, we propose a multi-scale CNN based on 3D context fusion, called M3DCF, for extracting lesion area from CT scans. In order to speed up the algorithm, the one-stage regression-based detector, rather than region proposal network, is adopted. Specifically, we employ 3D context fusion strategy that allows M3DCF fusing features from neighboring slices. Finally, we use a multi-scale scheme to combine low-level and high-level features. This strategy allows us to get more meaningful semantic information. The experimental results conducted on DeepLesion dataset indicates that the proposed method outperformed state-of-the-arts, including RetinaNet, Faster R-CNN, and 3DCE. The source code is available on https://github.com/JMUAIA/M3DCF.

The first author is a student. This work is supported by the National Natural Science Foundation of China under Grant No. 61702251, the Key Technical Project of Fujian Province under Grant No. 2017H6015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yan, K., et al.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501 (2018)

    Article  Google Scholar 

  2. Krizhevsky, A., Sutskever, I. , Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  3. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  4. Everingham, M., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Uijlings, J.R.R., et al.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  7. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  8. He, K., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  9. Dai, J., et al.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  10. Sermanet, P., et al.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  11. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  12. Lin, T.-Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  13. Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  15. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  16. Fu, C.-Y., et al.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  17. Dou, Q., Chen, H., Yu, L., et al.: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35(5), 1182–1195 (2016)

    Article  Google Scholar 

  18. Hwang, S., Kim, H.E.: Self-transfer learning for fully weakly supervised object localization. arXiv preprint arXiv:1602.01625 (2016)

  19. Teramoto, A., Fujita, H., Yamamuro, O., et al.: Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med. phys. 43(6Part1), 2821–2827 (2016)

    Article  Google Scholar 

  20. Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58

    Chapter  Google Scholar 

  21. Courbariaux, M., et al.: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or \(-\)1. arXiv preprint arXiv:1602.02830 (2016)

  22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010)

    Google Scholar 

  23. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  24. Ephraim, Y., Malah, D.: Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 32(6), 1109–1121 (1984)

    Article  Google Scholar 

  25. De Boer, P.-T., et al.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  26. Levinson, N.: The Wiener (root mean square) error criterion in filter design and prediction. J. Math. Phys. 25(1–4), 261–278 (1946)

    Article  MathSciNet  Google Scholar 

  27. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res 30(1), 79–82 (2005)

    Article  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Chen, J., Wang, Z., Su, J., Cai, G. (2019). Multi-scale Convolutional Neural Network Based on 3D Context Fusion for Lesion Detection. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11857. Springer, Cham. https://doi.org/10.1007/978-3-030-31654-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31654-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31653-2

  • Online ISBN: 978-3-030-31654-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics