Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simplified Revocable Hierarchical Identity-Based Encryption from Lattices

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11829))

Included in the following conference series:

Abstract

As an extension of identity-based encryption (IBE), revocable hierarchical IBE (RHIBE) supports both key revocation and key delegation simultaneously, which are two important functionalities for cryptographic use in practice. Recently in PKC 2019, Katsumata et al. constructed the first lattice-based RHIBE scheme with decryption key exposure resistance (DKER). Such constructions are all based on bilinear or multilinear maps before their work. In this paper, we simplify the construction of RHIBE scheme with DKER provided by Katsumata et al. With our new treatment of the identity spaces and the time period space, there is only one short trapdoor base in the master secret key and in the secret key of each identity. In addition, we claim that some items in the keys can also be removed due to the DKER setting. Our first RHIBE scheme in the standard model is presented as a result of the above simplification. Furthermore, based on the technique for lattice basis delegation in fixed dimension, we construct our second RHIBE scheme in the random oracle model. It has much shorter items in keys and ciphertexts than before, and also achieves the adaptive-identity security under the learning with errors (LWE) assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_6

    Chapter  MATH  Google Scholar 

  3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)

    Article  MathSciNet  Google Scholar 

  5. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 417–426. ACM (2008)

    Google Scholar 

  6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  7. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  8. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_29

    Chapter  Google Scholar 

  9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

    Google Scholar 

  10. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_31

    Chapter  Google Scholar 

  11. Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based revocable (Hierarchical) IBE with decryption key exposure resistance. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 441–471. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_15

    Chapter  Google Scholar 

  12. Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based Revocable (Hierarchical) IBE with Decryption Key Exposure Resistance. IACR Cryptology ePrint Archive, p 420 (2018). https://eprint.iacr.org/2018/420

    Google Scholar 

  13. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective, vol. 671. Springer, Heidelberg (2002)

    Book  Google Scholar 

  14. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  15. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  16. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_3

    Chapter  Google Scholar 

  17. Regev O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM (2005)

    Google Scholar 

  18. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 216–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_14

    Chapter  Google Scholar 

  19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  20. Takayasu, A., Watanabe, Y.: Lattice-based revocable identity-based encryption with bounded decryption key exposure resistance. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 184–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0_10

    Chapter  Google Scholar 

Download references

Acknowledgments

The work in this paper is supported by the National Natural Science Foundation of China (Grant Nos. 11531002, 61572026 and 61722213), the Open Foundation of State Key Laboratory of Cryptology, and the program of China Scholarship Council (CSC) (No. 201703170302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingnan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Zhang, J., He, J., Wang, H., Li, C. (2019). Simplified Revocable Hierarchical Identity-Based Encryption from Lattices. In: Mu, Y., Deng, R., Huang, X. (eds) Cryptology and Network Security. CANS 2019. Lecture Notes in Computer Science(), vol 11829. Springer, Cham. https://doi.org/10.1007/978-3-030-31578-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31578-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31577-1

  • Online ISBN: 978-3-030-31578-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics