Abstract
In this paper, we propose an efficient method for learning local image descriptors with convolutional autoencoders. We design an autoencoder architecture that yields computationally efficient extraction of patch descriptors through an intermediate image representation. The proposed approach yields significant savings in memory and processing time compared to a reference autoencoder-based patch descriptor. The results demonstrate improved robustness to noise and missing data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2911–2918. IEEE (2012)
Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors with triplets and shallow convolutional neural networks. In: BMVC, vol. 1, p. 3 (2016)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: European Conference on Computer Vision, pp. 778–792. Springer (2010)
Chen, L., Rottensteiner, F., Heipke, C.: Feature descriptor by convolution and pooling autoencoders. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives 40 (2015), Nr. 3W2 40(3W2), 31–38 (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database (2009)
He, K., Lu, Y., Sclaroff, S.: Local descriptors optimized for average precision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Advances in Neural Information Processing Systems, pp. 3–10 (1994)
Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, p. 1150. IEEE (1999)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to SIFT or SURF (2011)
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 118–126 (2015)
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)
Žižakić, N., Ito, I., Pižurica, A.: Efficient local image descriptors learned with autoencoders (in submission)
Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2015)
Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Žižakić, N., Ito, I., Pižurica, A. (2020). Learning Local Image Descriptors with Autoencoders. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-31254-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31253-4
Online ISBN: 978-3-030-31254-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)