Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Local Image Descriptors with Autoencoders

  • Conference paper
  • First Online:
Image Processing and Communications (IP&C 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1062))

Included in the following conference series:

Abstract

In this paper, we propose an efficient method for learning local image descriptors with convolutional autoencoders. We design an autoencoder architecture that yields computationally efficient extraction of patch descriptors through an intermediate image representation. The proposed approach yields significant savings in memory and processing time compared to a reference autoencoder-based patch descriptor. The results demonstrate improved robustness to noise and missing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2911–2918. IEEE (2012)

    Google Scholar 

  2. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors with triplets and shallow convolutional neural networks. In: BMVC, vol. 1, p. 3 (2016)

    Google Scholar 

  3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  4. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: European Conference on Computer Vision, pp. 778–792. Springer (2010)

    Google Scholar 

  5. Chen, L., Rottensteiner, F., Heipke, C.: Feature descriptor by convolution and pooling autoencoders. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives 40 (2015), Nr. 3W2 40(3W2), 31–38 (2015)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database (2009)

    Google Scholar 

  7. He, K., Lu, Y., Sclaroff, S.: Local descriptors optimized for average precision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Advances in Neural Information Processing Systems, pp. 3–10 (1994)

    Google Scholar 

  10. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, p. 1150. IEEE (1999)

    Google Scholar 

  11. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to SIFT or SURF (2011)

    Google Scholar 

  12. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 118–126 (2015)

    Google Scholar 

  13. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  14. Žižakić, N., Ito, I., Pižurica, A.: Efficient local image descriptors learned with autoencoders (in submission)

    Google Scholar 

  15. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2015)

    Google Scholar 

  16. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Žižakić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Žižakić, N., Ito, I., Pižurica, A. (2020). Learning Local Image Descriptors with Autoencoders. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_26

Download citation

Publish with us

Policies and ethics