Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11760))

  • 491 Accesses

Abstract

The Chinese monoid, related to Knuth’s Plactic monoid, is of great interest in algebraic combinatorics. Both are ternary monoids, generated by relations between words of three symbols. The relations are, for a totally ordered alphabet, \(cba = cab = bca\) if \(a \le b \le c\). In this note we establish confluence by tiling for the Chinese monoid, with the consequence that every two words uv have extensions to a common word: \(\forall u, v. \;\exists x, y. \;ux = vy\).

Our proof is given using decreasing diagrams, a method for obtaining confluence that is central in abstract rewriting theory. Decreasing diagrams may also be applicable to various related monoid presentations.

We conclude with some open questions for the monoids considered.

Dedication. Our paper is dedicated in friendship to Catuscia Palamidessi for her 60th anniversary, with fond memories of the second author of cooperations during her stays around 1990 at CWI Amsterdam; with admiration for her work and accomplishments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Already two labels suffice for proving confluence using decreasing diagrams of every countable abstract reduction system [10]. The completeness for uncountable systems remains a long-standing open problem [23]. For proving commutation (a generalisation of confluence involving two relations) decreasing diagrams are not complete, as established in [8].

References

  1. Bezem, M., Klop, J.W., van Oostrom, V.: Diagram techniques for confluence. Inform. Comput. 141(2), 172–204 (1998)

    Article  MathSciNet  Google Scholar 

  2. Book, R.V., Otto, F.: String-Rewriting Systems. Springer, Heidelberg (1993)

    Book  Google Scholar 

  3. Cain, A.J., Gray, R.D., Malheiro, A.: Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids. J. Algebra 423, 37–53 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cassaigne, J., Espie, M., Krob, D., Novelli, J.C., Hivert, F.: The Chinese monoid. IJAC 11(3), 301–334 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Date, E., Jimbo, M., Miwa, T.: Representations of \(U_q(gl(n, C))\) at \(q = 0\) and the Robinson-Schensted correspondence. World Sci. 185–211 (1990)

    Google Scholar 

  6. de Bruijn, N.G.: A note on weak diamond properties. Memorandum 78–08, Eindhoven Uninversity of Technology (1978)

    Google Scholar 

  7. Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Michel, J.: Foundations of Garside Theory. Tracts in Mathematics, vol. 22. European Mathematical Society, Zürich (2015)

    Book  Google Scholar 

  8. Endrullis, J., Klop, J.W.: De Bruijn’s weak diamond property revisited. Indagat. Math. 24(4), 1050–1072 (2013). In memory of N.G. (Dick) de Bruijn (1918–2012)

    Article  MathSciNet  Google Scholar 

  9. Endrullis, J., Klop, J.W.: Braids via term rewriting. Theor. Comp. Sci. 777, 260–295 (2019)

    Article  MathSciNet  Google Scholar 

  10. Endrullis, J., Klop, J.W., Overbeek, R.: Decreasing diagrams with two labels are complete for confluence of countable systems. In: Proceedings of the Conference on Formal Structures for Computation and Deduction (FSCD 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 108, pp. 14:1–14:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  11. Guiraud, Y., Malbos, P., Mimram, S.: A homotopical completion procedure with applications to coherence of monoids. In: Proceedings of Conference on Rewriting Techniques and Applications (RTA 2013), LIPIcs, vol. 21, pp. 223–238. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  12. Hage, N.: Finite convergent presentation of plactic monoid for type C. Int. J. Algebra Comput. 25(8), 1239–1264 (2015)

    Article  MathSciNet  Google Scholar 

  13. Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems. J. ACM (JACM) 27(4), 797–821 (1980)

    Article  MathSciNet  Google Scholar 

  14. Karpuz, E.G.: Complete rewriting system for the Chinese monoid. Appl. Math. Sci. 4(22), 1081–1087 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Karpuz, E.G.: Finite derivation type property on the Chinese monoid. Appl. Math. Sci. 4, 1073–1080 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Knuth, D.E.: Permutations, matrices, and generalized young tableaux. Pacific J. Math. 34(3), 709–727 (1970)

    Article  MathSciNet  Google Scholar 

  17. Lascoux, A., Leclerc, B., Thibon, J.: The plactic monoid. In: Algebraic Combinatorics on Words . Cambridge University Press (2001)

    Google Scholar 

  18. Lascoux, A., Schützenberger, M.P.: Le monoïde plaxique. Non-Commutative Struct. Algebra Geom. Combin. 109, 129–156 (1981)

    MATH  Google Scholar 

  19. Lebed, V.: Plactic monoids: a braided approach. CoRR, abs/1612.05768 (2016)

    Google Scholar 

  20. Leclerc, B., Thibon, J.Y.: The robinson-schensted correspondence as the quantum straightening at q = 0. Electron. J. Combin. 3(2), R11 (1996)

    MATH  Google Scholar 

  21. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961)

    Article  MathSciNet  Google Scholar 

  22. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  23. van Oostrom, V.: Confluence by decreasing diagrams. Theoret. Comput. Sci. 126(2), 259–280 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Endrullis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Endrullis, J., Klop, J.W. (2019). Confluence of the Chinese Monoid. In: Alvim, M., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds) The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy. Lecture Notes in Computer Science(), vol 11760. Springer, Cham. https://doi.org/10.1007/978-3-030-31175-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31175-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31174-2

  • Online ISBN: 978-3-030-31175-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics