Nothing Special   »   [go: up one dir, main page]

Skip to main content

EEG-Based Biometric Verification Using Siamese CNNs

  • Conference paper
  • First Online:
New Trends in Image Analysis and Processing – ICIAP 2019 (ICIAP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11808))

Included in the following conference series:

Abstract

Cognitive biometric characteristics have recently attracted the attention of the scientific community thanks to some of their interesting properties, such as their intrinsic liveness detection capability and their robustness against spoofing attacks. Among the traits belonging to this category, brain signals have been considered in several studies, commonly focusing on the analysis of electroencephalography (EEG) recordings. Unfortunately, a significant intra-class variability affects EEG data acquired at different times, making it therefore hard for current state-of-the-art methods to achieve high recognition rates. To cope with this issue, deep learning techniques have been recently employed to search for EEG discriminative information, yet only identification scenarios have been so far considered in literature. In this paper a verification context is instead taken into account, and proper networks are proposed to extract features allowing to differentiate subjects which are not available during network training, by resorting to siamese designs. The performed experimental tests, conducted over a longitudinal database comprising EEG acquisitions taken during five sessions spanning a period of one year and a half, show the effectiveness of the proposed approach in achieving high-level accuracy for brain-based biometric verification purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brigham, K., Kumar, B.V.: Subject identification from electroencephalogram (EEG) signals during imagined speech. In: IEEE BTAS (2010)

    Google Scholar 

  2. Campisi, P., La Rocca, D.: Brain waves for automatic biometric-based user recognition. IEEE Trans. Inf. Forensics Secur. 9(5), 782–800 (2014)

    Article  Google Scholar 

  3. Das, R., Maiorana, E., Campisi, P.: Visually evoked potential for EEG biometrics using convolutional neural network. In: EUSIPCO (2017)

    Google Scholar 

  4. Das, R., Maiorana, E., Campisi, P.: Motor imagery for EEG biometrics using convolutional neural network. In: IEEE ICASSP (2018)

    Google Scholar 

  5. El-Fiqi, H., et al.: Convolution neural networks for person identification and verification using steady state visual evoked potential. In: IEEE International Conference on SMC (2018)

    Google Scholar 

  6. Garau, M., Fraschini, M., Didaci, L., Marcialis, G.: Experimental results on multi-modal fusion of EEG-based personal verification algorithms. In: IEEE ICB (2016)

    Google Scholar 

  7. Gui, Q., Yang, W., Jin, Z.: A residual feature-based replay attack detection approach for brainprint biometric systems. In: IEEE WIFS (2016)

    Google Scholar 

  8. Hosseini, M.P., Pompili, D., Elisevich, K., Soltanian-Zadeh, H.: Optimized deep learning for EEG big data and seizure prediction BCI via internet of things. IEEE Trans. Big Data 3(4), 392–404 (2017)

    Article  Google Scholar 

  9. Labati, R., Munoz, E., Piuri, V., Sassi, R., Scotti, F.: Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recogn. Lett. (2018)

    Google Scholar 

  10. Ma, L., Minett, J., Blu, T., Wang, W.Y.: Resting state EEG-based biometrics for individual identification using convolutional neural networks. In: IEEE EMBC (2015)

    Google Scholar 

  11. Maiorana, E., Campisi, P.: Longitudinal evaluation of EEG-based biometric recognition. IEEE Trans. Inf. Forensics Secur. 13(5), 1123–1138 (2018)

    Article  Google Scholar 

  12. Maiorana, E., La Rocca, D., Campisi, P.: On the permanence of EEG signals for biometric recognition. IEEE Trans. Inf. Forensics Secur. 11(1), 163–175 (2016)

    Article  Google Scholar 

  13. Mao, Z., Yao, W., Huang, Y.: EEG-based biometric identification with deep learning. In: IEEE EMBC (2017)

    Google Scholar 

  14. Marcel, S., Millan, J.D.R.: Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans. Patt. Anal. Mach. Intell. 29(4), 743–748 (2006)

    Article  Google Scholar 

  15. McFarland, D., McCane, L., David, S., Wolpaw, J.: Spatial filter selection for EEG-based communication. Electroencephal. Clin. Neurophysiol. 103(3), 386–394 (1997)

    Article  Google Scholar 

  16. Ozdenizci, O., Wang, Y., Koike-Akino, T., Erdogmus, D.: Adversarial deep learning in EEG biometrics. IEEE Sign. Proces. Lett. 26(5), 710–714 (2019)

    Article  Google Scholar 

  17. Revett, K.: Cognitive biometrics: a novel approach to person authentication. Int. J. Cogn. Biom. 1(1), 1–9 (2012)

    Google Scholar 

  18. Schirrmeister, R., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–5420 (2017)

    Article  Google Scholar 

  19. Schons, T., Moreira, G., Silva, P., Coelho, V., Luz, E.: Convolutional network for EEG-based biometric. In: CIARP (2017)

    Google Scholar 

  20. Stassen, H.H.: Computerized recognition of persons by EEG spectral patterns. Electroencephalogr. Clin. Neurophysiol. 49(1–2), 190–194 (1980)

    Article  Google Scholar 

  21. Vevaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for Matlab. In: ACM International Conference on Multimedia (2015)

    Google Scholar 

  22. Wang, Y., Najafizadeh, L.: On the invariance of EEG-based signatures of individuality with application in biometric identification. In: IEEE EMBC (2016)

    Google Scholar 

  23. Yu, T., Wei, C.S., Chiang, K.J., Nakanishi, M., Jung, T.P.: EEG-based user authentication using a convolutional neural network. In: IEEE EMBS International Conference on Neural Engineering (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Maiorana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maiorana, E. (2019). EEG-Based Biometric Verification Using Siamese CNNs. In: Cristani, M., Prati, A., Lanz, O., Messelodi, S., Sebe, N. (eds) New Trends in Image Analysis and Processing – ICIAP 2019. ICIAP 2019. Lecture Notes in Computer Science(), vol 11808. Springer, Cham. https://doi.org/10.1007/978-3-030-30754-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30754-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30753-0

  • Online ISBN: 978-3-030-30754-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics