Nothing Special   »   [go: up one dir, main page]

Skip to main content

Distortion Estimation Through Explicit Modeling of the Refractive Surface

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

Abstract

Precise calibration is a must for high reliance 3D computer vision algorithms. A challenging case is when the camera is behind a protective glass or transparent object: due to refraction, the image is heavily distorted; the pinhole camera model alone can not be used and a distortion correction step is required. By directly modeling the geometry of the refractive media, we build the image generation process by tracing individual light rays from the camera to a target. Comparing the generated images to their distorted – observed – counterparts, we estimate the geometry parameters of the refractive surface via model inversion by employing an RBF neural network. We present an image collection methodology that produces data suited for finding the distortion parameters and test our algorithm on synthetic and real-world data. We analyze the results of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, A., Ramalingam, S., Taguchi, Y., Chari, V.: A theory of multi-layer flat refractive geometry. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3346–3353. IEEE (2012). https://doi.org/10.1109/CVPR.2012.6248073

  2. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  3. Brown, D.C.: Decentering distortion of lenses. Photogram. Eng. Remote Sens. 32(3), 444–462 (1966)

    Google Scholar 

  4. Cefalu, A., Haala, N., Fritsch, D.: Structureless bundle adjustment with self-calibration using accumulated constraints. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci. 3(3), 3–9 (2016). https://doi.org/10.5194/isprs-annals-iii-3-3-2016

    Article  Google Scholar 

  5. Chari, V., Sturm, P.: Multiple-view geometry of the refractive plane. In: BMVC 2009-20th British Machine Vision Conference, pp. 1–11. The British Machine Vision Association (BMVA) (2009). https://doi.org/10.5244/c.23.56

  6. Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for general cameras. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 213–219. IEEE (2005). https://doi.org/10.1109/cvpr.2005.43

  7. Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001). https://doi.org/10.1007/pl00013269

    Article  Google Scholar 

  8. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-125–I-132. IEEE (2001). https://doi.org/10.1109/CVPR.2001.990465

  9. Grossberg, M.D., Nayar, S.K.: The raxel imaging model and ray-based calibration. Int. J. Comput. Vision 61(2), 119–137 (2005). https://doi.org/10.1023/b:visi.0000043754.56350.10

    Article  Google Scholar 

  10. Hartley, R., Kang, S.B.: Parameter-free radial distortion correction with center of distortion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1309–1321 (2007). https://doi.org/10.1109/iccv.2005.184

    Article  Google Scholar 

  11. Haykin, S.O.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, London (2009)

    Google Scholar 

  12. Morinaka, S., Sakaue, F., Sato, J., Ishimaru, K., Kawasaki, N.: 3D reconstruction under light ray distortion from parametric focal cameras. Pattern Recogn. Lett. 16–54 (2018). https://doi.org/10.1016/j.patrec.2018.11.007

    Article  Google Scholar 

  13. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991). https://doi.org/10.1162/neco.1991.3.2.246

    Article  Google Scholar 

  14. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  15. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, Burlington (2016). https://doi.org/10.1016/c2013-0-15557-2

    Book  Google Scholar 

  16. Sturm, P., Ramalingam, S.: A generic concept for camera calibration. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24671-8_1

    Chapter  Google Scholar 

  17. Szeliski, R.: Computer vision: algorithms and applications. Springer Science & Business Media (2010). https://doi.org/10.1007/978-1-84882-935-0

    Article  MATH  Google Scholar 

  18. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal on Robotics and Automation 3(4), 323–344 (1987). https://doi.org/10.1109/JRA.1987.1087109

    Article  Google Scholar 

  19. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000). https://doi.org/10.1109/34.888718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Pável .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pável, S., Sándor, C., Csató, L. (2019). Distortion Estimation Through Explicit Modeling of the Refractive Surface. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics