Abstract
Motivated by the human way of memorizing images we introduce their functional representation, where an image is represented by a neural network. For this purpose, we construct a hypernetwork which takes an image and returns weights to the target network, which maps point from the plane (representing positions of the pixel) into its corresponding color in the image. Since the obtained representation is continuous, one can easily inspect the image at various resolutions and perform on it arbitrary continuous operations. Moreover, by inspecting interpolations we show that such representation has some properties characteristic to generative models. To evaluate the proposed mechanism experimentally, we apply it to image super-resolution problem. Despite using a single model for various scaling factors, we obtained results comparable to existing super-resolution methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We can reasonably hypothesize that a human representation of an image in the memory is given by some neural network.
- 2.
Other experimental studies report that there are not much difference between using cosine and ReLU as activity function [14].
References
Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017). https://doi.org/10.1109/CVPRW.2017.150
Baldi, P.: Autoencoders, unsupervised learning and deep architectures. In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, UTLW 2011, vol. 27, pp. 37–50. JMLR.org (2011). http://dl.acm.org/citation.cfm?id=3045796.3045801
Banfield, J.D., Raftery, A.E.: Model-based gaussian and non-gaussian clustering. Biometrics 49(3), 803–821 (1993). https://doi.org/10.2307/2532201. http://www.jstor.org/stable/2532201
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012). https://doi.org/10.5244/C.26.135
Brock, A., Lim, T., Ritchie, J.M., Weston, N.: SMASH: one-shot model architecture search through hypernetworks. CoRR abs/1708.05344 (2017). arXiv:abs/1708.05344
Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000). https://doi.org/10.1109/30.920468
Czarnecki, W.M., Osindero, S., Jaderberg, M., Swirszcz, G., Pascanu, R.: Rethinking the inception architecture for computer vision. In: Advances in Neural Information Processing Systems, pp. 4278–4287 (2017). https://doi.org/10.1109/CVPR.2016.308
Czarnecki, W.M., Osindero, S., Jaderberg, M., Swirszcz, G., Pascanu, R.: Sobolev training for neural networks. In: Advances in Neural Information Processing Systems, pp. 4278–4287 (2017)
Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29
Do, M.N., Vetterli, M.: The finite ridgelet transform for image representation. IEEE Trans. Image Process. 12(1), 16–28 (2003). https://doi.org/10.1109/TIP.2002.806252
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016). https://doi.org/10.1109/TPAMI.2015.2439281
Gao, S., Gruev, V.: Bilinear and bicubic interpolation methods for division of focal plane polarimeters. Opt. Express 19(27), 26161–26173 (2011). https://doi.org/10.1364/OE.19.026161
Geladi, P., Kowalski, B.R.: Partial least-squares regression: a tutorial. Analytica chimica acta 185, 1–17 (1986). https://doi.org/10.1016/0003-2670(86)80028-9
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)
Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015). https://doi.org/10.1109/CVPR.2015.7299156
Hwang, J.W., Lee, H.S.: Adaptive image interpolation based on local gradient features. IEEE Signal Process. Lett. 11(3), 359–362 (2004). https://doi.org/10.1109/LSP.2003.821718
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016). https://doi.org/10.1109/CVPR.2016.182
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Krueger, D., Huang, C.W., Islam, R., Turner, R., Lacoste, A., Courville, A.: Bayesian hypernetworks. arXiv preprint arXiv:1710.04759 (2017)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017). https://doi.org/10.1109/CVPR.2017.19
Lee, T.S.: Image representation using 2D gabor wavelets. IEEE Transactions on pattern analysis and machine intelligence 18(10), 959–971 (1996). https://doi.org/10.1109/34.541406
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017). https://doi.org/10.1109/CVPRW.2017.151
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017). https://doi.org/10.1109/CVPR.2017.106
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (2015). https://doi.org/10.1109/ICCV.2015.425
Lorraine, J., Duvenaud, D.: Stochastic hyperparameter optimization through hypernetworks. CoRR abs/1802.09419 (2018). arXiv:abs/1802.09419
Louizos, C., Welling, M.: Multiplicative normalizing flows for variational bayesian neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2218–2227. JMLR. org (2017)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: null, p. 416. IEEE (2001). https://doi.org/10.1109/ICCV.2001.937655
Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press (2001). https://doi.org/10.1109/TNN.2005.848998
Sheikh, A.S., Rasul, K., Merentitis, A., Bergmann, U.: Stochastic maximum likelihood optimization via hypernetworks. arXiv preprint arXiv:1712.01141 (2017)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594
Takeda, H., Farsiu, S., Milanfar, P., et al.: Kernel regression for image processing and reconstruction. Ph.D. thesis, Citeseer (2006). https://doi.org/10.1109/TIP.2006.888330
Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558 (2017)
Unser, M., Aldroubi, A., Eden, M.: Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 3, 277–285 (1991). https://doi.org/10.1109/34.75515
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008). https://doi.org/10.1145/1390156.1390294
Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual tracking. In: Advances in Neural Information Processing Systems, pp. 809–817 (2013)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861
Yeh, R.A., Chen, C., Yian Lim, T., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5485–5493 (2017). https://doi.org/10.1109/CVPR.2017.728
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Zhang, C., Ren, M., Urtasun, R.: Graph hypernetworks for neural architecture search. CoRR abs/1810.05749 (2018). arXiv:abs/1810.05749
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)
Acknowledgements
This work was partially supported by the National Science Centre (Poland) grant no. 2018/31/B/ST6/00993 and by the Foundation for Polish Science grant no. POIR.04.04.00-00-14DE/18-00.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Klocek, S., Maziarka, Ł., Wołczyk, M., Tabor, J., Nowak, J., Śmieja, M. (2019). Hypernetwork Functional Image Representation. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. ICANN 2019. Lecture Notes in Computer Science(), vol 11731. Springer, Cham. https://doi.org/10.1007/978-3-030-30493-5_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-30493-5_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30492-8
Online ISBN: 978-3-030-30493-5
eBook Packages: Computer ScienceComputer Science (R0)