Nothing Special   »   [go: up one dir, main page]

Skip to main content

Explainable Artificial Intelligence Based Heat Recycler Fault Detection in Air Handling Unit

  • Conference paper
  • First Online:
Explainable, Transparent Autonomous Agents and Multi-Agent Systems (EXTRAAMAS 2019)

Abstract

We are entering a new age of AI applications where machine learning is the core technology but machine learning models are generally non-intuitive, opaque and usually complicated for people to understand. The current AI applications inability to explain is decisions and actions to end users have limited its effectiveness. The explainable AI will enable the users to understand, accordingly trust and effectively manage the decisions made by machine learning models. The heat recycler’s fault detection in Air Handling Unit (AHU) has been explained with explainable artificial intelligence since the fault detection is particularly burdensome because the reason for its failure is mostly unknown and unique. The key requirement of such systems is the early diagnosis of such faults for its economic and functional efficiency. The machine learning models, Support Vector Machine and Neural Networks have been used for the diagnosis of the fault and explainable artificial intelligence has been used to explain the models’ behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Support Vector Machine. https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72. Accessed 26 Feb 2019

  2. ELI5 (2019). https://github.com/TeamHG-Memex/eli5. Accessed 04 June 2019

  3. LIME (2019). https://towardsdatascience.com/. Accessed 04 June 2019

  4. Shap (2019). https://github.com/slundberg/shap. Accessed 04 June 2019

  5. Skater (2019). https://github.com/oracle/Skater. Accessed 04 June 2019

  6. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  7. Anjomshoae, S., Främling, K., Najjar, A.: Explanations of black-box model predictions by contextual importance and utility

    Google Scholar 

  8. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and robots: results from a systematic literature review. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, pp. 1078–1088. International Foundation for Autonomous Agents and Multiagent Systems (2019)

    Google Scholar 

  9. Beghi, A., Brignoli, R., Cecchinato, L., Menegazzo, G., Rampazzo, M.: A data-driven approach for fault diagnosis in HVAC chiller systems. In: 2015 IEEE Conference on Control Applications (CCA), pp. 966–971. IEEE (2015)

    Google Scholar 

  10. Du, Z., Jin, X., Wu, L.: Fault detection and diagnosis based on improved PCA with JAA method in VAV systems. Build. Environ. 42(9), 3221–3232 (2007)

    Article  Google Scholar 

  11. Du, Z., Jin, X., Yang, Y.: Wavelet neural network-based fault diagnosis in air-handling units. HVAC&R Res. 14(6), 959–973 (2008)

    Article  Google Scholar 

  12. Främling, K.: Explaining results of neural networks by contextual importance and utility. In: Proceedings of the AISB 1996 Conference. Citeseer (1996)

    Google Scholar 

  13. Främling, K.: Modélisation et apprentissage des préférences par réseaux de neurones pour l’aide à la décision multicritère. Ph.D. thesis, INSA de Lyon (1996)

    Google Scholar 

  14. Främling, K., Graillot, D.: Extracting explanations from neural networks. In: Proceedings of the ICANN, vol. 95, pp. 163–168. Citeseer (1995)

    Google Scholar 

  15. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 93 (2018)

    Article  Google Scholar 

  16. Gunning, D.: Explainable artificial intelligence. Technical report released by DARPA (2017)

    Google Scholar 

  17. Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What do we need to build explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923 (2017)

  18. Lee, W.Y., House, J.M., Park, C., Kelly, G.E.: Fault diagnosis of an air-handling unit using artificial neural networks. Trans.-Am. Soc. Heat. Refrig. Air Cond. Eng. 102, 540–549 (1996)

    Google Scholar 

  19. Madhikermi, M., Yousefnezhad, N., Främling, K.: Heat recovery unit failure detection in air handling unit. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 536, pp. 343–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_43

    Chapter  Google Scholar 

  20. Mills, E., et al.: The cost-effectiveness of commissioning new and existing commercial buildings: lessons from 224 buildings. In: Proceedings of the National Conference on Building Commissioning (2005)

    Google Scholar 

  21. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008)

    Article  Google Scholar 

  22. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  23. Roulet, C.A., Heidt, F., Foradini, F., Pibiri, M.C.: Real heat recovery with air handling units. Energy Build. 33(5), 495–502 (2001)

    Article  Google Scholar 

  24. Sheh, R., Monteath, I.: Introspectively assessing failures through explainable artificial intelligence. In: IROS Workshop on Introspective Methods for Reliable Autonomy (2017)

    Google Scholar 

  25. Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for small-unit tactical behavior. In: Proceedings of the National Conference on Artificial Intelligence, Menlo Park, CA, pp. 900–907. AAAI Press/MIT Press, Cambridge/London 1999 (2004)

    Google Scholar 

  26. Wang, S., Xiao, F.: Detection and diagnosis of ahu sensor faults using principal component analysis method. Energy Convers. Manag. 45(17), 2667–2686 (2004)

    Article  Google Scholar 

  27. Wang, X.F., Huang, D.S.: A novel density-based clustering framework by using level set method. IEEE Trans. Knowl. Data Eng. 21(11), 1515–1531 (2009)

    Article  Google Scholar 

  28. Xiao, F., Wang, S.: Progress and methodologies of lifecycle commissioning of HVAC systems to enhance building sustainability. Renew. Sustain. Energy Rev. 13(5), 1144–1149 (2009)

    Article  Google Scholar 

  29. Yan, K., Zhong, C., Ji, Z., Huang, J.: Semi-supervised learning for early detection and diagnosis of various air handling unit faults. Energy Build. 181, 75–83 (2018)

    Article  Google Scholar 

  30. Yan, R., Ma, Z., Kokogiannakis, G., Zhao, Y.: A sensor fault detection strategy for air handling units using cluster analysis. Autom. Constr. 70, 77–88 (2016)

    Article  Google Scholar 

  31. ten Zeldam, S., de Jong, A., Loendersloot, R., Tinga, T.: Automated failure diagnosis in aviation maintenance using explainable artificial intelligence (XAI). In: Proceedings of the European Conference of the PHM Society, vol. 4 (2018)

    Google Scholar 

  32. Zhu, Y., Jin, X., Du, Z.: Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal. Energy Build. 44, 7–16 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avleen Kaur Malhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madhikermi, M., Malhi, A.K., Främling, K. (2019). Explainable Artificial Intelligence Based Heat Recycler Fault Detection in Air Handling Unit. In: Calvaresi, D., Najjar, A., Schumacher, M., Främling, K. (eds) Explainable, Transparent Autonomous Agents and Multi-Agent Systems. EXTRAAMAS 2019. Lecture Notes in Computer Science(), vol 11763. Springer, Cham. https://doi.org/10.1007/978-3-030-30391-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30391-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30390-7

  • Online ISBN: 978-3-030-30391-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics