Abstract
In this paper we continue the investigation of the effect of local search in geometric semantic genetic programming (GSGP), with the introduction of a new general local search operator that can be easily customized. We show that it is able to obtain results on par with the current best-performing GSGP with local search and, in most cases, better than standard GSGP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for computational pharmacokinetics in drug discovery and development. Genet. Program. Evolvable Mach. 8(4), 413–432 (2007)
Azad, R.M.A., Ryan, C.: A simple approach to lifetime learning in genetic programming-based symbolic regression. Evol. Comput. 22(2), 287–317 (2014)
Castelli, M., Manzoni, L., Vanneschi, L., Silva, S., Popovič, A.: Self-tuning geometric semantic genetic programming. Genet. Program. Evolvable Mach. 17(1), 55–74 (2016)
Castelli, M., Trujillo, L., Vanneschi, L.: Energy consumption forecasting using semantic-based genetic programming with local search optimizer. Comput. Intell. Neurosci. 2015, 57 (2015)
Castelli, M., Trujillo, L., Vanneschi, L., Popovič, A.: Prediction of relative position of ct slices using a computational intelligence system. Appl. Soft Comput. 46, 537–542 (2016)
Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., et al.: Geometric semantic genetic programming with local search. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 999–1006. ACM (2015)
Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013)
Castelli, M., Vanneschi, L., Trujillo, L., Popovič, A.: Stock index return forecasting: semantics-based genetic programming with local search optimiser. Int. J. Bio-Inspired Comput. 10(3), 159–171 (2017)
Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. Trans. Evol. Computat. 15(5), 591–607 (2011)
Enríquez-Zárate, J., et al.: Automatic modeling of a gas turbine using genetic programming: an experimental study. Appl. Soft Comput. 50, 212–222 (2017)
Hajek, P., Henriques, R., Castelli, M., Vanneschi, L.: Forecasting performance of regional innovation systems using semantic-based genetic programming with local search optimizer. Comput. Oper. Res. 106, 179–190 (2019)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT press, Cambridge (1992)
Koza, J.R.: Human-competitive results produced by genetic programming. Genet. Program. Evolvable Mach. 11(3–4), 251–284 (2010)
Trujillo, L., et al.: Local search is underused in genetic programming. In: Riolo, R., Worzel, B., Goldman, B., Tozier, B. (eds.) Genetic Programming Theory and Practice XIV. GEC, pp. 119–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97088-2_8
Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3
Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms, vol. 379. Springer, Heidelberg (2012)
Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of numeric leaf values. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, GECCO2001, pp. 155–162, Morgan Kaufmann Publishers Inc., San Francisco (2001)
Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_18
Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complexity in genetic programming. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 877–884. ACM (2010)
Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)
Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: Evaluating the effects of local search in genetic programming. In: Tantar, A.-A., Tantar, E., Sun, J.-Q., Zhang, W., Ding, Q., Schütze, O., Emmerich, M., Legrand, P., Del Moral, P., Coello Coello, C.A. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. AISC, vol. 288, pp. 213–228. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07494-8_15
Zhang, M., Smart, W.: Genetic programming with gradient descent search for multiclass object classification. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 399–408. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24650-3_38
Acknowledgments
This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia) under project DSAIPA/DS/0022/2018 (GADgET).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Castelli, M., Manzoni, L., Mariot, L., Saletta, M. (2019). Extending Local Search in Geometric Semantic Genetic Programming. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11804. Springer, Cham. https://doi.org/10.1007/978-3-030-30241-2_64
Download citation
DOI: https://doi.org/10.1007/978-3-030-30241-2_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30240-5
Online ISBN: 978-3-030-30241-2
eBook Packages: Computer ScienceComputer Science (R0)