Abstract
This paper proposes to study the synthesis of unordered binary decision diagrams (BDDs) using solvers for Quantified Boolean Formulas (QBF). The synthesis of a BDD falls naturally in the realm of quantified formulas as we are typically looking for a BDD satisfying a certain specification. This means that we ask whether there exists a BDD such that for all inputs the specification is satisfied. We show that this query can be encoded naturally into QBF and experimentally evaluate these queries for the minority function.
The short paper should be seen as a challenge for further research on QBF solving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahar, R.I., et al.: Algebraic decision diagrams and their applications. In: Proceedings International Conference on Computer-Aided Design, pp. 188–191 (1993)
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 100(8), 677–691 (1986)
Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_20
Gascón, A., Subramanyan, P., Dutertre, B., Tiwari, A., Jovanovic, D., Malik, S.: Template-based circuit understanding. In: Formal Methods in Computer-Aided Design (FMCAD) (2014)
Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI Conference on Artificial Intelligence (2018)
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)
Jo, S., Matsumoto, T., Fujita, M.: SAT-based automatic rectification and debugging of combinational circuits with LUT insertions. In: Asian Test Symposium, pp. 19–24 (2012)
Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Proceedings of BNP (Workshop) (2016)
Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press (2009)
Maksimovic, D., Le, B., Veneris, A.G.: Multiple clock domain synchronization in a QBF-based verification environment. In: International Conference on Computer-aided Design (ICCAD) (2014)
Narodytska, N., Legg, A., Bacchus, F., Ryzhyk, L., Walker, A.: Solving games without controllable predecessor. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 533–540. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_35
Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Theory and Applications of Satisfiability Testing (SAT), pp. 298–313 (2017)
Pudlák, P.: A lower bound on complexity of branching programs. In: Chytil, M.P., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 480–489. Springer, Heidelberg (1984). https://doi.org/10.1007/BFb0030331
Razborov, A.A.: Lower bounds for deterministic and nondeterministic branching programs. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 47–60. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54458-5_49
Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73
Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_24
Tveretina, O., Sinz, C., Zantema, H.: An exponential lower bound on OBDD refutations for pigeonhole formulas. In: Athens Colloquium on Algorithms and Complexity, ACAC, pp. 13–21 (2009). https://doi.org/10.4204/EPTCS.4.2
Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of two-level logic minimization. IEEE Trans. CAD Integr. Circ. Syst. 25(7), 1230–1246 (2006). https://doi.org/10.1109/TCAD.2005.855944
Acknowledgments
This work was supported by national funds through FCT - Fundação para a Ciência e a Tecnologia with reference UID/CEC/50021/2019 and the project INFOCOS with reference PTDC/CCI-COM/32378/2017.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Janota, M. (2019). On Unordered BDDs and Quantified Boolean Formulas. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-30244-3_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30243-6
Online ISBN: 978-3-030-30244-3
eBook Packages: Computer ScienceComputer Science (R0)